Zhou Y, Cui Q, Zhou Y. NmSEER V2.0: a prediction tool for 2'-O-methylation sites based on random forest and multi-encoding combination.
BMC Bioinformatics 2019;
20:690. [PMID:
31874624 PMCID:
PMC6929462 DOI:
10.1186/s12859-019-3265-8]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background
2′-O-methylation (2′-O-me or Nm) is a post-transcriptional RNA methylation modified at 2′-hydroxy, which is common in mRNAs and various non-coding RNAs. Previous studies revealed the significance of Nm in multiple biological processes. With Nm getting more and more attention, a revolutionary technique termed Nm-seq, was developed to profile Nm sites mainly in mRNA with single nucleotide resolution and high sensitivity. In a recent work, supported by the Nm-seq data, we have reported a method in silico for predicting Nm sites, which relies on nucleotide sequence information, and established an online server named NmSEER. More recently, a more confident dataset produced by refined Nm-seq was available. Therefore, in this work, we redesigned the prediction model to achieve a more robust performance on the new data.
Results
We redesigned the prediction model from two perspectives, including machine learning algorithm and multi-encoding scheme combination. With optimization by 5-fold cross-validation tests and evaluation by independent test respectively, random forest was selected as the most robust algorithm. Meanwhile, one-hot encoding, together with position-specific dinucleotide sequence profile and K-nucleotide frequency encoding were collectively applied to build the final predictor.
Conclusions
The predictor of updated version, named NmSEER V2.0, achieves an accurate prediction performance (AUROC = 0.862) and has been settled into a brand-new server, which is available at http://www.rnanut.net/nmseer-v2/ for free.
Collapse