1
|
Gou F, Liu J, Xiao C, Wu J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics (Basel) 2024; 14:1472. [PMID: 39061610 PMCID: PMC11275417 DOI: 10.3390/diagnostics14141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of economic conditions and the increase in living standards, people's attention in regard to health is also continuously increasing. They are beginning to place their hopes on machines, expecting artificial intelligence (AI) to provide a more humanized medical environment and personalized services, thus greatly expanding the supply and bridging the gap between resource supply and demand. With the development of IoT technology, the arrival of the 5G and 6G communication era, and the enhancement of computing capabilities in particular, the development and application of AI-assisted healthcare have been further promoted. Currently, research on and the application of artificial intelligence in the field of medical assistance are continuously deepening and expanding. AI holds immense economic value and has many potential applications in regard to medical institutions, patients, and healthcare professionals. It has the ability to enhance medical efficiency, reduce healthcare costs, improve the quality of healthcare services, and provide a more intelligent and humanized service experience for healthcare professionals and patients. This study elaborates on AI development history and development timelines in the medical field, types of AI technologies in healthcare informatics, the application of AI in the medical field, and opportunities and challenges of AI in the field of medicine. The combination of healthcare and artificial intelligence has a profound impact on human life, improving human health levels and quality of life and changing human lifestyles.
Collapse
Affiliation(s)
- Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Chunwen Xiao
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Cinaglia P, Milano M, Cannataro M. Multilayer network alignment based on topological assessment via embeddings. BMC Bioinformatics 2023; 24:416. [PMID: 37932663 PMCID: PMC10629033 DOI: 10.1186/s12859-023-05508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Network graphs allow modelling the real world objects in terms of interactions. In a multilayer network, the interactions are distributed over layers (i.e., intralayer and interlayer edges). Network alignment (NA) is a methodology that allows mapping nodes between two or multiple given networks, by preserving topologically similar regions. For instance, NA can be applied to transfer knowledge from one biological species to another. In this paper, we present DANTEml, a software tool for the Pairwise Global NA (PGNA) of multilayer networks, based on topological assessment. It builds its own similarity matrix by processing the node embeddings computed from two multilayer networks of interest, to evaluate their topological similarities. The proposed solution can be used via a user-friendly command line interface, also having a built-in guided mode (step-by-step) for defining input parameters. RESULTS We investigated the performance of DANTEml based on (i) performance evaluation on synthetic multilayer networks, (ii) statistical assessment of the resulting alignments, and (iii) alignment of real multilayer networks. DANTEml over performed a method that does not consider the distribution of nodes and edges over multiple layers by 1193.62%, and a method for temporal NA by 25.88%; we also performed the statistical assessment, which corroborates the significance of its own node mappings. In addition, we tested the proposed solution by using a real multilayer network in presence of several levels of noise, in accordance with the same outcome pursued for the NA on our dataset of synthetic networks. In this case, the improvement is even more evident: +4008.75% and +111.72%, compared to a method that does not consider the distribution of nodes and edges over multiple layers and a method for temporal NA, respectively. CONCLUSIONS DANTEml is a software tool for the PGNA of multilayer networks based on topological assessment, that is able to provide effective alignments both on synthetic and real multi layer networks, of which node mappings can be validated statistically. Our experimentation reported a high degree of reliability and effectiveness for the proposed solution.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marianna Milano
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| |
Collapse
|
3
|
Cinaglia P, Cannataro M. Identifying Candidate Gene-Disease Associations via Graph Neural Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:909. [PMID: 37372253 DOI: 10.3390/e25060909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Real-world objects are usually defined in terms of their own relationships or connections. A graph (or network) naturally expresses this model though nodes and edges. In biology, depending on what the nodes and edges represent, we may classify several types of networks, gene-disease associations (GDAs) included. In this paper, we presented a solution based on a graph neural network (GNN) for the identification of candidate GDAs. We trained our model with an initial set of well-known and curated inter- and intra-relationships between genes and diseases. It was based on graph convolutions, making use of multiple convolutional layers and a point-wise non-linearity function following each layer. The embeddings were computed for the input network built on a set of GDAs to map each node into a vector of real numbers in a multidimensional space. Results showed an AUC of 95% for training, validation, and testing, that in the real case translated into a positive response for 93% of the Top-15 (highest dot product) candidate GDAs identified by our solution. The experimentation was conducted on the DisGeNET dataset, while the DiseaseGene Association Miner (DG-AssocMiner) dataset by Stanford's BioSNAP was also processed for performance evaluation only.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Santos MVC, Feltrin AS, Costa-Amaral IC, Teixeira LR, Perini JA, Martins DC, Larentis AL. Network Analysis of Biomarkers Associated with Occupational Exposure to Benzene and Malathion. Int J Mol Sci 2023; 24:ijms24119415. [PMID: 37298367 DOI: 10.3390/ijms24119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.
Collapse
Affiliation(s)
- Marcus Vinicius C Santos
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Arthur S Feltrin
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Isabele C Costa-Amaral
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Liliane R Teixeira
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| | - Jamila A Perini
- Research Laboratory of Pharmaceutical Sciences (LAPESF), State University of Rio de Janeiro (West Zone-UERJ-ZO), Rio de Janeiro 23070-200, RJ, Brazil
| | - David C Martins
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ariane L Larentis
- Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
5
|
Cinaglia P, Cannataro M. A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040665. [PMID: 37190452 PMCID: PMC10138164 DOI: 10.3390/e25040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
In network analysis, real-world systems may be represented via graph models, where nodes and edges represent the set of biological objects (e.g., genes, proteins, molecules) and their interactions, respectively. This representative knowledge-graph model may also consider the dynamics involved in the evolution of the network (i.e., dynamic networks), in addition to a classic static representation (i.e., static networks). Bioinformatics solutions for network analysis allow knowledge extraction from the features related to a single network of interest or by comparing networks of different species. For instance, we may align a network related to a well known species to a more complex one in order to find a match able to support new hypotheses or studies. Therefore, the network alignment is crucial for transferring the knowledge between species, usually from simplest (e.g., rat) to more complex (e.g., human). Methods: In this paper, we present Dynamic Network Alignment based on Temporal Embedding (DANTE), a novel method for pairwise alignment of dynamic networks that applies the temporal embedding to investigate the topological similarities between the two input dynamic networks. The main idea of DANTE is to consider the evolution of interactions and the changes in network topology. Briefly, the proposed solution builds a similarity matrix by integrating the tensors computed via the embedding process and, subsequently, it aligns the pairs of nodes by performing its own iterative maximization function. Results: The performed experiments have reported promising results in terms of precision and accuracy, as well as good robustness as the number of nodes and time points increases. The proposed solution showed an optimal trade-off between sensitivity and specificity on the alignments produced on several noisy versions of the dynamic yeast network, by improving by ∼18.8% (with a maximum of 20.6%) the Area Under the Receiver Operating Characteristic (ROC) Curve (i.e., AUC or AUROC), compared to two well known methods: DYNAMAGNA++ and DYNAWAVE. From the point of view of quality, DANTE outperformed these by ∼91% as nodes increase and by ∼75% as the number of time points increases. Furthermore, a ∼23.73% improvement in terms of node correctness was reported with our solution on real dynamic networks.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, Data Analytics Research Center, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Alfano C, Farina L, Petti M. Networks as Biomarkers: Uses and Purposes. Genes (Basel) 2023; 14:429. [PMID: 36833356 PMCID: PMC9956930 DOI: 10.3390/genes14020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Networks-based approaches are often used to analyze gene expression data or protein-protein interactions but are not usually applied to study the relationships between different biomarkers. Given the clinical need for more comprehensive and integrative biomarkers that can help to identify personalized therapies, the integration of biomarkers of different natures is an emerging trend in the literature. Network analysis can be used to analyze the relationships between different features of a disease; nodes can be disease-related phenotypes, gene expression, mutational events, protein quantification, imaging-derived features and more. Since different biomarkers can exert causal effects between them, describing such interrelationships can be used to better understand the underlying mechanisms of complex diseases. Networks as biomarkers are not yet commonly used, despite being proven to lead to interesting results. Here, we discuss in which ways they have been used to provide novel insights into disease susceptibility, disease development and severity.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Rome, Italy
| | - Manuela Petti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Rome, Italy
| |
Collapse
|
7
|
Hosseinzadeh MM, Cannataro M, Guzzi PH, Dondi R. Temporal networks in biology and medicine: a survey on models, algorithms, and tools. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:10. [PMID: 36618274 PMCID: PMC9803903 DOI: 10.1007/s13721-022-00406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.
Collapse
Affiliation(s)
| | - Mario Cannataro
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Riccardo Dondi
- Department of Literature, Philosophy, Communication Studies, University of Bergamo, Bergamo, Italy
| |
Collapse
|
8
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|