1
|
Tanvir F, Saifuddin KM, Islam MIK, Akbas E. DDI Prediction With Heterogeneous Information Network - Meta-Path Based Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1168-1179. [PMID: 38905082 DOI: 10.1109/tcbb.2024.3417715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Drug-drug interaction (DDI) indicates where a particular drug's desired course of action is modified when taken with other drug (s). DDIs may hamper, enhance, or reduce the expected effect of either drug or, in the worst possible scenario, cause an adverse side effect. While it is crucial to identify drug-drug interactions, it is quite impossible to detect all possible DDIs for a new drug during the clinical trial. Therefore, many computational methods are proposed for this task. This paper presents a novel method based on a heterogeneous information network (HIN), which consists of drugs and other biomedical entities like proteins, pathways, and side effects. Afterward, we extract the rich semantic relationships among these entities using different meta-path-based topological features and facilitate DDI prediction. In addition, we present a heterogeneous graph attention network-based end-to-end model for DDI prediction in the heterogeneous graph. Experimental results show that our proposed method accurately predicts DDIs and outperforms the baselines significantly.
Collapse
|
2
|
Wang H, Cui Z, Yang Y, Wang B, Zhu L, Zhang W. A Network Enhancement Method to Identify Spurious Drug-Drug Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1335-1347. [PMID: 38635380 DOI: 10.1109/tcbb.2024.3385796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
As medical safety and drug regulation gain heightened attention, the detection of spurious drug-drug interactions (DDI) has become key in healthcare. Although current research using graph neural networks (GNNs) to predict DDI has shown impressive results, it often fails to account for false DDI in the constructed DDI networks. Such inaccuracies caused by data errors, false alarms, or incorrect drug details can skew the network's structure and hinder the accuracy of GNN-based predictions. To tackle this challenge, we propose ANSM, a network-enhancement method specifically designed to identify and attenuate spurious links between drugs for ensuring the accuracy of DDI networks. ANSM integrates three key components: the feature extractor, the network optimizer, and the discriminative classifier. The feature extractor captures local structural features from drug node pairs, while the network optimizer leverages network information to improve feature extraction and reduce the impact of spurious DDI links. The discriminative classifier then identifies potential spurious links. Experimental results demonstrate that ANSM outperforms state-of-the-art methods in identifying spurious DDI.
Collapse
|
3
|
Cheng J, Zhang Y, Zhang H, Ji S, Lu M. TransFOL: A Logical Query Model for Complex Relational Reasoning in Drug-Drug Interaction. IEEE J Biomed Health Inform 2024; 28:4975-4985. [PMID: 38743532 DOI: 10.1109/jbhi.2024.3401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Predicting drug-drug interaction (DDI) plays a crucial role in drug recommendation and discovery. However, wet lab methods are prohibitively expensive and time-consuming due to drug interactions. In recent years, deep learning methods have gained widespread use in drug reasoning. Although these methods have demonstrated effectiveness, they can only predict the interaction between a drug pair and do not contain any other information. However, DDI is greatly affected by various other biomedical factors (such as the dose of the drug). As a result, it is challenging to apply them to more complex and meaningful reasoning tasks. Therefore, this study regards DDI as a link prediction problem on knowledge graphs and proposes a DDI prediction model based on Cross-Transformer and Graph Convolutional Networks (GCNs) in first-order logical query form, TransFOL. In the model, a biomedical query graph is first built to learn the embedding representation. Subsequently, an enhancement module is designed to aggregate the semantics of entities and relations. Cross-Transformer is used for encoding to obtain semantic information between nodes, and GCN is used to gather neighbour information further and predict inference results. To evaluate the performance of TransFOL on common DDI tasks, we conduct experiments on two benchmark datasets. The experimental results indicate that our model outperforms state-of-the-art methods on traditional DDI tasks. Additionally, we introduce different biomedical information in the other two experiments to make the settings more realistic. Experimental results verify the strong drug reasoning ability and generalization of TransFOL in complex settings.
Collapse
|
4
|
Niu D, Zhang L, Zhang B, Zhang Q, Li Z. DAS-DDI: A dual-view framework with drug association and drug structure for drug-drug interaction prediction. J Biomed Inform 2024; 156:104672. [PMID: 38857738 DOI: 10.1016/j.jbi.2024.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
In drug development and clinical application, drug-drug interaction (DDI) prediction is crucial for patient safety and therapeutic efficacy. However, traditional methods for DDI prediction often overlook the structural features of drugs and the complex interrelationships between them, which affect the accuracy and interpretability of the model. In this paper, a novel dual-view DDI prediction framework, DAS-DDI is proposed. Firstly, a drug association network is constructed based on similarity information among drugs, which could provide rich context information for DDI prediction. Subsequently, a novel drug substructure extraction method is proposed, which could update the features of nodes and chemical bonds simultaneously, improving the comprehensiveness of the feature. Furthermore, an attention mechanism is employed to fuse multiple drug embeddings from different views dynamically, enhancing the discriminative ability of the model in handling multi-view data. Comparative experiments on three public datasets demonstrate the superiority of DAS-DDI compared with other state-of-the-art models under two scenarios.
Collapse
Affiliation(s)
- Dongjiang Niu
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Lianwei Zhang
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Beiyi Zhang
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Qiang Zhang
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Hou LX, Yi HC, You ZH, Chen SH, Zheng J, Kwoh CK. MathEagle: Accurate prediction of drug-drug interaction events via multi-head attention and heterogeneous attribute graph learning. Comput Biol Med 2024; 177:108642. [PMID: 38820777 DOI: 10.1016/j.compbiomed.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Drug-drug interaction events influence the effectiveness of drug combinations and can lead to unexpected side effects or exacerbate underlying diseases, jeopardizing patient prognosis. Most existing methods are restricted to predicting whether two drugs interact or the type of drug-drug interactions, while very few studies endeavor to predict the specific risk levels of side effects of drug combinations. METHODS In this study, we propose MathEagle, a novel approach to predict accurate risk levels of drug combinations based on multi-head attention and heterogeneous attribute graph learning. Initially, we model drugs and three distinct risk levels between drugs as a heterogeneous information graph. Subsequently, behavioral and chemical structure features of drugs are utilized by message passing neural networks and graph embedding algorithms, respectively. Ultimately, MathEagle employs heterogeneous graph convolution and multi-head attention mechanisms to learn efficient latent representations of drug nodes and estimates the risk levels of pairwise drugs in an end-to-end manner. RESULTS To assess the effectiveness and robustness of the model, five-fold cross-validation, ablation experiments, and case studies were conducted. MathEagle achieved an accuracy of 85.85 % and an AUC of 0.9701 on the drug risk level prediction task and is superior to all comparative models. The MathEagle predictor is freely accessible at http://120.77.11.78/MathEagle/. CONCLUSIONS The experimental results indicate that MathEagle can function as an effective tool for predicting accurate risk of drug combinations, aiding in guiding clinical medication, and enhancing patient outcomes.
Collapse
Affiliation(s)
- Lin-Xuan Hou
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710129, China
| | - Hai-Cheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710129, China.
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Shi-Hong Chen
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jia Zheng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| |
Collapse
|
6
|
Zhang D, Wang Z, Zhao D, Li J. DRGATAN: Directed relation graph attention aware network for asymmetric drug-drug interaction prediction. iScience 2024; 27:109943. [PMID: 38868194 PMCID: PMC11167430 DOI: 10.1016/j.isci.2024.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
In scenarios involving the treatment of complex or coexisting diseases with multiple drugs, the potential for severe adverse drug reactions in patients necessitates the identification of potential drug-drug interactions (DDIs). Most existing computational methods have not taken into account the asymmetry and relation types of drug interactions caused by the relation information between drugs, which may lead to missing information in embedded learning. Therefore, this paper proposes a directed relation graph attention aware network (DRGATAN) to predict asymmetric drug interactions. DRGATAN leverages an encoder to learn multi-relational role embeddings of drugs across different types of relations. The experimental results show that DRGATAN's performance is superior to recognized advanced methods. The visualization demonstrates the effect of utilizing asymmetric information, and the case analysis validates the reliability of the proposed method. This study provides guidance for predicting asymmetric drug interactions.
Collapse
Affiliation(s)
- Dehai Zhang
- The Key Laboratory of Software Engineering of Yunnan Province, School of Software, Yunnan University, Kunming 650091, P.R. China
| | - Zhengwu Wang
- The Key Laboratory of Software Engineering of Yunnan Province, School of Software, Yunnan University, Kunming 650091, P.R. China
| | - Di Zhao
- The Key Laboratory of Software Engineering of Yunnan Province, School of Software, Yunnan University, Kunming 650091, P.R. China
| | - Jin Li
- The Key Laboratory of Software Engineering of Yunnan Province, School of Software, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
7
|
Hu B, Yu Z, Li M. MPHGCL-DDI: Meta-Path-Based Heterogeneous Graph Contrastive Learning for Drug-Drug Interaction Prediction. Molecules 2024; 29:2483. [PMID: 38893359 PMCID: PMC11173658 DOI: 10.3390/molecules29112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The combinatorial therapy with multiple drugs may lead to unexpected drug-drug interactions (DDIs) and result in adverse reactions to patients. Predicting DDI events can mitigate the potential risks of combinatorial therapy and enhance drug safety. In recent years, deep models based on heterogeneous graph representation learning have attracted widespread interest in DDI event prediction and have yielded satisfactory results, but there is still room for improvement in prediction performance. In this study, we proposed a meta-path-based heterogeneous graph contrastive learning model, MPHGCL-DDI, for DDI event prediction. The model constructs two contrastive views based on meta-paths: an average graph view and an augmented graph view. The former represents that there are connections between drugs, while the latter reveals how the drugs connect with each other. We defined three levels of data augmentation schemes in the augmented graph view and adopted a combination of three losses in the model training phase: multi-relation prediction loss, unsupervised contrastive loss and supervised contrastive loss. Furthermore, the model incorporates indirect drug information, protein-protein interactions (PPIs), to reveal latent relations of drugs. We evaluated MPHGCL-DDI on three different tasks of two datasets. Experimental results demonstrate that MPHGCL-DDI surpasses several state-of-the-art methods in performance.
Collapse
Affiliation(s)
- Baofang Hu
- School of Data and Computer Science, Shandong Women’s University, Jinan 250030, China;
| | - Zhenmei Yu
- School of Data and Computer Science, Shandong Women’s University, Jinan 250030, China;
| | - Mingke Li
- School of Information Science and Engineering, University of Jinan, Jinan 250024, China;
| |
Collapse
|
8
|
Cocco M, Carnovale C, Clementi E, Barbieri MA, Battini V, Sessa M. Exploring the impact of co-exposure timing on drug-drug interactions in signal detection through spontaneous reporting system databases: a scoping review. Expert Rev Clin Pharmacol 2024; 17:441-453. [PMID: 38619027 DOI: 10.1080/17512433.2024.2343875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Drug-drug interactions (DDIs) are defined as the pharmacological effects produced by the concomitant administration of two or more drugs. To minimize false positive signals and ensure their validity when analyzing Spontaneous Reporting System (SRS) databases, it has been suggested to incorporate key pharmacological principles, such as temporal plausibility. AREAS COVERED The scoping review of the literature was completed using MEDLINE from inception to March 2023. Included studies had to provide detailed methods for identifying DDIs in SRS databases. Any methodological approach and adverse event were accepted. Descriptive analyzes were excluded as we focused on automatic signal detection methods. The result is an overview of all the available methods for DDI signal detection in SRS databases, with a specific focus on the evaluation of the co-exposure time of the interacting drugs. It is worth noting that only a limited number of studies (n = 3) have attempted to address the issue of overlapping drug administration times. EXPERT OPINION Current guidelines for signal validation focus on factors like the number of reports and temporal association, but they lack guidance on addressing overlapping drug administration times, highlighting a need for further research and method development.
Collapse
Affiliation(s)
- Marianna Cocco
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Carla Carnovale
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Maria Antonietta Barbieri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
M. Abdelhaleem Ali A, M. Alrobaian M. Strengths and weaknesses of current and future prospects of artificial intelligence-mounted technologies applied in the development of pharmaceutical products and services. Saudi Pharm J 2024; 32:102043. [PMID: 38585196 PMCID: PMC10997913 DOI: 10.1016/j.jsps.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Starting from drug discovery, through research and development, to clinical trials and FDA approval, artificial intelligence (AI) plays a vital role in planning, developing, assessing modelling, and optimization of product attributes. In recent decades, machine-learning algorithms integrated into artificial neural networks, neuro-fuzzy logic and decision trees have been applied to tremendous domains related to drug formulation development. Optimized formulations were transformed from lab to market based on optimized properties derived from AI Technologies. Research and development in pharmaceutical industry rely upon computer-driven equipment and machine learning technology to extract data, perform simulations, modelling, and optimization to get optimum solutions. Merging AI technologies in various steps of pharmaceutical manufacture is a major challenge due to lack of in-house technologies. In silico studies based on artificial intelligence are widely applied as effective tools to screen the market needs of medications and pharmaceutical services through inspecting scientific literature and prioritizing medicines for specific illnesses or a particular patient. Specialized personnel who excel in scientific and data science with analytical knowledge are essential for transformation to smart manufacturing and offering services. However, privacy, cybersecurity, AI-dependent unemployment, and ownership rights of AI technologies require proper regulations to gain the benefits and minimize the drawbacks.
Collapse
Affiliation(s)
- Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P. O. Box 11099, P. Code 21944, Taif, Saudi Arabia
| | - Majed M. Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P. O. Box 11099, P. Code 21944, Taif, Saudi Arabia
| |
Collapse
|
10
|
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model 2024; 64:2158-2173. [PMID: 37458400 DOI: 10.1021/acs.jcim.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Xiaoyu Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Shang Junliang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
11
|
Luo H, Yin W, Wang J, Zhang G, Liang W, Luo J, Yan C. Drug-drug interactions prediction based on deep learning and knowledge graph: A review. iScience 2024; 27:109148. [PMID: 38405609 PMCID: PMC10884936 DOI: 10.1016/j.isci.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Weijie Yin
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| |
Collapse
|
12
|
Yan X, Gu C, Feng Y, Han J. Predicting Drug-drug Interaction with Graph Mutual Interaction Attention Mechanism. Methods 2024; 223:16-25. [PMID: 38262485 DOI: 10.1016/j.ymeth.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Effective representation of molecules is a crucial step in AI-driven drug design and drug discovery, especially for drug-drug interaction (DDIs) prediction. Previous work usually models the drug information from the drug-related knowledge graph or the single drug molecules, but the interaction information between molecular substructures of drug pair is seldom considered, thus often ignoring the influence of bond information on atom node representation, leading to insufficient drug representation. Moreover, key molecular substructures have significant contribution to the DDIs prediction results. Therefore, in this work, we propose a novel Graph learning framework of Mutual Interaction Attention mechanism (called GMIA) to predict DDIs by effectively representing the drug molecules. Specifically, we build the node-edge message communication encoder to aggregate atom node and the incoming edge information for atom node representation and design the mutual interaction attention decoder to capture the mutual interaction context between molecular graphs of drug pairs. GMIA can bridge the gap between two encoders for the single drug molecules by attention mechanism. We also design a co-attention matrix to analyze the significance of different-size substructures obtained from the encoder-decoder layer and provide interpretability. In comparison with other recent state-of-the-art methods, our GMIA achieves the best results in terms of area under the precision-recall-curve (AUPR), area under the ROC curve (AUC), and F1 score on two different scale datasets. The case study indicates that our GMIA can detect the key substructure for potential DDIs, demonstrating the enhanced performance and interpretation ability of GMIA.
Collapse
Affiliation(s)
- Xiaoying Yan
- College of Computer Science, Xi'an Shiyou University, Xi'an 710065, China.
| | - Chi Gu
- College of Computer Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Yuehua Feng
- College of Computer Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Jiaxin Han
- College of Computer Science, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
13
|
Bergman DR, Norton KA, Jain HV, Jackson T. Connecting Agent-Based Models with High-Dimensional Parameter Spaces to Multidimensional Data Using SMoRe ParS: A Surrogate Modeling Approach. Bull Math Biol 2023; 86:11. [PMID: 38159216 PMCID: PMC10757706 DOI: 10.1007/s11538-023-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Across a broad range of disciplines, agent-based models (ABMs) are increasingly utilized for replicating, predicting, and understanding complex systems and their emergent behavior. In the biological and biomedical sciences, researchers employ ABMs to elucidate complex cellular and molecular interactions across multiple scales under varying conditions. Data generated at these multiple scales, however, presents a computational challenge for robust analysis with ABMs. Indeed, calibrating ABMs remains an open topic of research due to their own high-dimensional parameter spaces. In response to these challenges, we extend and validate our novel methodology, Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS), arriving at a computationally efficient framework for connecting high dimensional ABM parameter spaces with multidimensional data. Specifically, we modify SMoRe ParS to initially confine high dimensional ABM parameter spaces using unidimensional data, namely, single time-course information of in vitro cancer cell growth assays. Subsequently, we broaden the scope of our approach to encompass more complex ABMs and constrain parameter spaces using multidimensional data. We explore this extension with in vitro cancer cell inhibition assays involving the chemotherapeutic agent oxaliplatin. For each scenario, we validate and evaluate the effectiveness of our approach by comparing how well ABM simulations match the experimental data when using SMoRe ParS-inferred parameters versus parameters inferred by a commonly used direct method. In so doing, we show that our approach of using an explicitly formulated surrogate model as an interlocutor between the ABM and the experimental data effectively calibrates the ABM parameter space to multidimensional data. Our method thus provides a robust and scalable strategy for leveraging multidimensional data to inform multiscale ABMs and explore the uncertainty in their parameters.
Collapse
Affiliation(s)
- Daniel R Bergman
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Kerri-Ann Norton
- Computational Biology Laboratory, Computer Science Program, Bard College, 30 Campus Road, Annandale-on-Hudson, NY, 12504, USA
| | - Harsh Vardhan Jain
- Department of Mathematics & Statistics, University of Minnesota Duluth, 1117 University Drive, Duluth, MN, 55812, USA
| | - Trachette Jackson
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Lin S, Mao X, Hong L, Lin S, Wei DQ, Xiong Y. MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms. Methods 2023; 220:1-10. [PMID: 37858611 DOI: 10.1016/j.ymeth.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
Collapse
Affiliation(s)
- Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, China; Peng Cheng National Laboratory, Shenzhen 518055, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
15
|
Seo J, Jung H, Ko Y. PRID: Prediction Model Using RWR for Interactions between Drugs. Pharmaceutics 2023; 15:2469. [PMID: 37896229 PMCID: PMC10610536 DOI: 10.3390/pharmaceutics15102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Drug-drug interactions (DDI) occur because of the unexpected pharmacological effects of drug pairs. Although drug efficacy can be improved by taking two or more drugs in the short term, this may cause inevitable side effects. Currently, multiple drugs are prescribed based on the experience or knowledge of the clinician, and there is no standard database that can be referred to as safe co-prescriptions. Thus, accurately identifying DDI is critical for patient safety and treatment modalities. Many computational methods have been developed to predict DDIs based on chemical structures or biological features, such as target genes or functional mechanisms. However, some features are only available for certain drugs, and their pathological mechanisms cannot be fully employed to predict DDIs by considering the direct overlap of target genes. In this study, we propose a novel deep learning model to predict DDIs by utilizing chemical structure similarity and protein-protein interaction (PPI) information among drug-binding proteins, such as carriers, transporters, enzymes, and targets (CTET) proteins. We applied the random walk with restart (RWR) algorithm to propagate drug CTET proteins across a PPI network derived from the STRING database, which will lead to the successful incorporation of the hidden biological mechanisms between CTET proteins and disease-associated genes. We confirmed that the RWR propagation of CTET proteins helps predict DDIs by utilizing indirectly co-regulated biological mechanisms. Our method identified the known DDIs between clinically proven epilepsy drugs. Our results demonstrated the effectiveness of PRID in predicting DDIs in known drug combinations as well as unknown drug pairs. PRID could be helpful in identifying novel DDIs and associated pharmacological mechanisms to cause the DDIs.
Collapse
Affiliation(s)
| | | | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin 17035, Gyeonggi-do, Republic of Korea; (J.S.); (H.J.)
| |
Collapse
|
16
|
Huang A, Xie X, Yao X, Liu H, Wang X, Peng S. HF-DDI: Predicting Drug-Drug Interaction Events Based on Multimodal Hybrid Fusion. J Comput Biol 2023; 30:961-971. [PMID: 37594774 DOI: 10.1089/cmb.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Drug-drug interactions (DDIs) can have a significant impact on patient safety and health. Predicting potential DDIs before administering drugs to patients is a critical step in drug development and can help prevent adverse drug events. In this study, we propose a novel method called HF-DDI for predicting DDI events based on various drug features, including molecular structure, target, and enzyme information. Specifically, we design our model with both early fusion and late fusion strategies and utilize a score calculation module to predict the likelihood of interactions between drugs. Our model was trained and tested on a large data set of known DDIs, achieving an overall accuracy of 0.948. The results suggest that incorporating multiple drug features can improve the accuracy of DDI event prediction and may be useful for improving drug safety and patient outcomes.
Collapse
Affiliation(s)
- An Huang
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin, China
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xiaolan Xie
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin, China
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
17
|
Lv J, Liu G, Ju Y, Huang H, Li D, Sun Y. Identification of Robust Antibiotic Subgroups by Integrating Multi-Species Drug-Drug Interactions. J Chem Inf Model 2023; 63:4970-4978. [PMID: 37459588 DOI: 10.1021/acs.jcim.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Previous studies have shown that antibiotics can be divided into groups, and drug-drug interactions (DDI) depend on their groups. However, these studies focused on a specific bacteria strain (i.e., Escherichia coli BW25113). Existing datasets often contain noise. Noisy labeled data may have a bad effect on the clustering results. To address this problem, we developed a multi-source information fusion method for integrating DDI information from multiple bacterial strains. Specifically, we calculated drug similarities based on the DDI network of each bacterial strain and then fused these drug similarity matrices to obtain a new fused similarity matrix. The fused similarity matrix was combined with the T-distributed stochastic neighbor embedding algorithm, and hierarchical clustering algorithm can effectively identify antibiotic subgroups. These antibiotic subgroups are strongly correlated with known antibiotic classifications, and group-group interactions are almost monochromatic. In summary, our method provides a promising framework for understanding the mechanism of action of antibiotics and exploring multi-species group-group interactions.
Collapse
Affiliation(s)
- Ji Lv
- College of Computer Science and Technology, Jilin University, Changchun 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130000, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130000, China
| | - Yuan Ju
- Sichuan University Library, Sichuan University, 610000 Chengdu, China
| | - Houhou Huang
- College of Chemistry, Jilin University, Changchun 130000, China
| | - Dalin Li
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
18
|
Han CD, Wang CC, Huang L, Chen X. MCFF-MTDDI: multi-channel feature fusion for multi-typed drug-drug interaction prediction. Brief Bioinform 2023; 24:bbad215. [PMID: 37291761 DOI: 10.1093/bib/bbad215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
Collapse
Affiliation(s)
- Chen-Di Han
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
19
|
Zhang M, Gao H, Liao X, Ning B, Gu H, Yu B. DBGRU-SE: predicting drug-drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism. Brief Bioinform 2023:7176312. [PMID: 37225428 DOI: 10.1093/bib/bbad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
The prediction of drug-drug interactions (DDIs) is essential for the development and repositioning of new drugs. Meanwhile, they play a vital role in the fields of biopharmaceuticals, disease diagnosis and pharmacological treatment. This article proposes a new method called DBGRU-SE for predicting DDIs. Firstly, FP3 fingerprints, MACCS fingerprints, Pubchem fingerprints and 1D and 2D molecular descriptors are used to extract the feature information of the drugs. Secondly, Group Lasso is used to remove redundant features. Then, SMOTE-ENN is applied to balance the data to obtain the best feature vectors. Finally, the best feature vectors are fed into the classifier combining BiGRU and squeeze-and-excitation (SE) attention mechanisms to predict DDIs. After applying five-fold cross-validation, The ACC values of DBGRU-SE model on the two datasets are 97.51 and 94.98%, and the AUC are 99.60 and 98.85%, respectively. The results showed that DBGRU-SE had good predictive performance for drug-drug interactions.
Collapse
Affiliation(s)
| | - Hongli Gao
- Qingdao University of Science and Technology, China
| | - Xin Liao
- Qingdao University of Science and Technology, China
| | - Baoxing Ning
- Qingdao University of Science and Technology, China
| | - Haiming Gu
- Qingdao University of Science and Technology, China
| | - Bin Yu
- Qingdao University of Science and Technology, China
| |
Collapse
|
20
|
Yu H, Li K, Dong W, Song S, Gao C, Shi J. Attention-based cross domain graph neural network for prediction of drug-drug interactions. Brief Bioinform 2023:7167644. [PMID: 37195815 DOI: 10.1093/bib/bbad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/19/2023] Open
Abstract
Drug-drug interactions (DDI) may lead to adverse reactions in human body and accurate prediction of DDI can mitigate the medical risk. Currently, most of computer-aided DDI prediction methods construct models based on drug-associated features or DDI network, ignoring the potential information contained in drug-related biological entities such as targets and genes. Besides, existing DDI network-based models could not make effective predictions for drugs without any known DDI records. To address the above limitations, we propose an attention-based cross domain graph neural network (ACDGNN) for DDI prediction, which considers the drug-related different entities and propagate information through cross domain operation. Different from the existing methods, ACDGNN not only considers rich information contained in drug-related biomedical entities in biological heterogeneous network, but also adopts cross-domain transformation to eliminate heterogeneity between different types of entities. ACDGNN can be used in the prediction of DDIs in both transductive and inductive setting. By conducting experiments on real-world dataset, we compare the performance of ACDGNN with several state-of-the-art methods. The experimental results show that ACDGNN can effectively predict DDIs and outperform the comparison models.
Collapse
Affiliation(s)
- Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - KangKang Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - WenMin Dong
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - ShuangHong Song
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Gao
- Rocket Force University of Engineering, Xi'an 710025, China
| | - JianYu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
21
|
EMSI-BERT: Asymmetrical Entity-Mask Strategy and Symbol-Insert Structure for Drug–Drug Interaction Extraction Based on BERT. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drug-drug interaction (DDI) extraction has seen growing usage of deep models, but their effectiveness has been restrained by limited domain-labeled data, a weak representation of co-occurring entities, and poor adaptation of downstream tasks. This paper proposes a novel EMSI-BERT method for drug–drug interaction extraction based on an asymmetrical Entity-Mask strategy and a Symbol-Insert structure. Firstly, the EMSI-BERT method utilizes the asymmetrical Entity-Mask strategy to address the weak representation of co-occurring entity information using the drug entity dictionary in the pre-training BERT task. Secondly, the EMSI-BERT method incorporates four symbols to distinguish different entity combinations of the same input sequence and utilizes the Symbol-Insert structure to address the week adaptation of downstream tasks in the fine-tuning stage of DDI classification. The experimental results showed that EMSI-BERT for DDI extraction achieved a 0.82 F1-score on DDI-Extraction 2013, and it improved the performances of the multi-classification task of DDI extraction and the two-classification task of DDI detection. Compared with baseline Basic-BERT, the proposed pre-training BERT with the asymmetrical Entity-Mask strategy could obtain better effects in downstream tasks and effectively limit “Other” samples’ effects. The model visualization results illustrated that EMSI-BERT could extract semantic information at different levels and granularities in a continuous space.
Collapse
|
22
|
Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions. Clin Ther 2023; 45:117-133. [PMID: 36732152 DOI: 10.1016/j.clinthera.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite increasing mechanistic understanding, undetected and underrecognized drug-drug interactions (DDIs) persist. This elusiveness relates to an interwoven complexity of increasing polypharmacy, multiplex mechanistic pathways, and human biological individuality. This persistent elusiveness motivates development of artificial intelligence (AI)-based approaches to enhancing DDI detection and prediction capabilities. The literature is vast and roughly divided into "prediction" and "detection." The former relatively emphasizes biological and chemical knowledge bases, drug development, new drugs, and beneficial interactions, whereas the latter utilizes more traditional sources such as spontaneous reports, claims data, and electronic health records to detect novel adverse DDIs with authorized drugs. However, it is not a bright line, either nominally or in practice, and both are in scope for pharmacovigilance supporting signal detection but also signal refinement and evaluation, by providing data-based mechanistic arguments for/against DDI signals. The wide array of intricate and elegant methods has expanded the pharmacovigilance tool kit. How much they add to real prospective pharmacovigilance, reduce the public health impact of DDIs, and at what cost in terms of false alarms amplified by automation bias and its sequelae are open questions. (Clin Ther. 2023;45:XXX-XXX) © 2023 Elsevier HS Journals, Inc.
Collapse
|
23
|
Ma M, Lei X. A dual graph neural network for drug-drug interactions prediction based on molecular structure and interactions. PLoS Comput Biol 2023; 19:e1010812. [PMID: 36701288 PMCID: PMC9879511 DOI: 10.1371/journal.pcbi.1010812] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023] Open
Abstract
Expressive molecular representation plays critical roles in researching drug design, while effective methods are beneficial to learning molecular representations and solving related problems in drug discovery, especially for drug-drug interactions (DDIs) prediction. Recently, a lot of work has been put forward using graph neural networks (GNNs) to forecast DDIs and learn molecular representations. However, under the current GNNs structure, the majority of approaches learn drug molecular representation from one-dimensional string or two-dimensional molecular graph structure, while the interaction information between chemical substructure remains rarely explored, and it is neglected to identify key substructures that contribute significantly to the DDIs prediction. Therefore, we proposed a dual graph neural network named DGNN-DDI to learn drug molecular features by using molecular structure and interactions. Specifically, we first designed a directed message passing neural network with substructure attention mechanism (SA-DMPNN) to adaptively extract substructures. Second, in order to improve the final features, we separated the drug-drug interactions into pairwise interactions between each drug's unique substructures. Then, the features are adopted to predict interaction probability of a DDI tuple. We evaluated DGNN-DDI on real-world dataset. Compared to state-of-the-art methods, the model improved DDIs prediction performance. We also conducted case study on existing drugs aiming to predict drug combinations that may be effective for the novel coronavirus disease 2019 (COVID-19). Moreover, the visual interpretation results proved that the DGNN-DDI was sensitive to the structure information of drugs and able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method enhanced the performance and interpretation capability of DDI prediction modeling.
Collapse
Affiliation(s)
- Mei Ma
- School of Computer Science, Shaanxi Normal University, Xi’an, China
- School of Mathematics and Statistics, Qinghai Normal University, Qinghai, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an, China
- * E-mail:
| |
Collapse
|
24
|
MSResG: Using GAE and Residual GCN to Predict Drug-Drug Interactions Based on Multi-source Drug Features. Interdiscip Sci 2023; 15:171-188. [PMID: 36646843 DOI: 10.1007/s12539-023-00550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Drug-drug interaction refers to taking the two drugs may produce certain reaction which may be a threat to patients' health, or enhance the efficacy helpful for medical work. Therefore, it is necessary to study and predict it. In fact, traditional experimental methods can be used for drug-drug interaction prediction, but they are time-consuming and costly, so we prefer to use more accurate and convenient calculation methods to predict the unknown drug-drug interaction. In this paper, we proposed a deep learning framework called MSResG that considers multi-sources features of drugs and combines them with Graph Auto-Encoder to predicting. Firstly, the model obtains four feature representations of drugs from the database, namely, chemical substructure, target, pathway and enzyme, and then calculates the Jaccard similarity of the drugs. To balance different drug features, we perform similarity integration by finding the mean value. Then we will be comprehensive similarity network combined with drug interaction network, and encodes and decodes it using the graph auto-encoder based on residual graph convolution network. Encoding is to learn the potential feature vectors of drugs, which contain similar information and interaction information. Decoding is to reconstruct the network to predict unknown drug-drug interaction. The experimental results show that our model has advanced performance and is superior to other existing advanced methods. Case study also shows that MSResG has practical significance.
Collapse
|
25
|
Pan D, Quan L, Jin Z, Chen T, Wang X, Xie J, Wu T, Lyu Q. Multisource Attention-Mechanism-Based Encoder-Decoder Model for Predicting Drug-Drug Interaction Events. J Chem Inf Model 2022; 62:6258-6270. [PMID: 36449561 DOI: 10.1021/acs.jcim.2c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many computational methods have been proposed to predict drug-drug interactions (DDIs), which can occur when combining drugs to treat various diseases, but most mainly utilize single-source features of drugs, which is inadequate for drug representation. To fill this gap, we propose two attention-mechanism-based encoder-decoder models that incorporate multisource information: one is MAEDDI, which can predict DDIs, and the other is MAEDDIE, which can make further DDI-associated event predictions for drug pairs with DDIs. To better express the drug feature, we used three encoding methods to encode the drugs, integrating the self-attention mechanism, cross-attention mechanism, and graph attention network to construct a multisource feature fusion network. Experiments showed that both MAEDDI and MAEDDIE performed better than some state-of-the-art methods in various validation attempts at different experimental tasks. The visualization analysis showed that the semantic features of drug pairs learned from our models had a good drug representation. In practice, MAEDDIE successfully screened 43 DDI events on favipiravir, an influenza antiviral drug, with a success rate of nearly 50%. Our model achieved competitive results, mainly owing to the design of sequence-based, structural, biochemical, and statistical multisource features. Moreover, different encoders constructed based on different features learn the interrelationship information between drug pairs, and the different representations of these drug pairs are incorporated to predict the target problem. All of these encoders were designed to better characterize the complex DDI relationships, allowing us to achieve high generalization in DDI and DDI-associated event predations.
Collapse
Affiliation(s)
- Deng Pan
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| | - Zhi Jin
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Taoning Chen
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Xuejiao Wang
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Jingxin Xie
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Tingfang Wu
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| | - Qiang Lyu
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| |
Collapse
|
26
|
Shtar G, Greenstein-Messica A, Mazuz E, Rokach L, Shapira B. Predicting drug characteristics using biomedical text embedding. BMC Bioinformatics 2022; 23:526. [PMID: 36476573 PMCID: PMC9730627 DOI: 10.1186/s12859-022-05083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug-drug interactions (DDIs) are preventable causes of medical injuries and often result in doctor and emergency room visits. Previous research demonstrates the effectiveness of using matrix completion approaches based on known drug interactions to predict unknown Drug-drug interactions. However, in the case of a new drug, where there is limited or no knowledge regarding the drug's existing interactions, such an approach is unsuitable, and other drug's preferences can be used to accurately predict new Drug-drug interactions. METHODS We propose adjacency biomedical text embedding (ABTE) to address this limitation by using a hybrid approach which combines known drugs' interactions and the drug's biomedical text embeddings to predict the DDIs of both new and well known drugs. RESULTS Our evaluation demonstrates the superiority of this approach compared to recently published DDI prediction models and matrix factorization-based approaches. Furthermore, we compared the use of different text embedding methods in ABTE, and found that the concept embedding approach, which involves biomedical information in the embedding process, provides the highest performance for this task. Additionally, we demonstrate the effectiveness of leveraging biomedical text embedding for additional drugs' biomedical prediction task by presenting text embedding's contribution to a multi-modal pregnancy drug safety classification. CONCLUSION Text and concept embeddings created by analyzing a domain-specific large-scale biomedical corpora can be used for predicting drug-related properties such as Drug-drug interactions and drug safety prediction. Prediction models based on the embeddings resulted in comparable results to hand-crafted features, however text embeddings do not require manual categorization or data collection and rely solely on the published literature.
Collapse
Affiliation(s)
- Guy Shtar
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Asnat Greenstein-Messica
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Mazuz
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rokach
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bracha Shapira
- grid.7489.20000 0004 1937 0511Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
27
|
Chen M, Jiang W, Pan Y, Dai J, Lei Y, Ji C. SGFNNs: Signed Graph Filtering-based Neural Networks for Predicting Drug-Drug Interactions. J Comput Biol 2022; 29:1104-1116. [PMID: 35723646 DOI: 10.1089/cmb.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Capturing comprehensive information about drug-drug interactions (DDIs) is one of the key tasks in public health and drug development. Recently, graph neural networks (GNNs) have received increasing attention in the drug discovery domain due to their capability of integrating drugs profiles and the network structure into a low-dimensional feature space for predicting links and classification. Most of GNN models for DDI predictions are built on an unsigned graph, which tends to represent associated nodes with similar embedding results. However, semantic correlation between drugs, such as degressive effects, or even adverse side reactions should be disassortative. In this study, we put forward signed GNNs to model assortative and disassortative relationships within drug pairs. Since negative links exclude direct generalization of spectral filters on unsigned graph, we divide the signed graph into two unsigned subgraphs to dedicate two spectral filters, which captures both commonality and difference of drug pairs. For drug representations we derive two signed graph filtering-based neural networks (SGFNNs) which integrate signed graph structures and drug node attributes. Moreover, we use an end-to-end framework for learning DDIs, where an SGFNN together with a discriminator is jointly trained under a problem-specific loss function. The experimental results on two prediction problems show that our framework can obtain significant improvements compared with baselines. The case study further verifies the validation of our method.
Collapse
Affiliation(s)
- Ming Chen
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Wei Jiang
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jianhua Dai
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Yunwen Lei
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Chunyan Ji
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Zhu S, Bai Q, Li L, Xu T. Drug repositioning in drug discovery of T2DM and repositioning potential of antidiabetic agents. Comput Struct Biotechnol J 2022; 20:2839-2847. [PMID: 35765655 PMCID: PMC9189996 DOI: 10.1016/j.csbj.2022.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Repositioning or repurposing drugs account for a substantial part of entering approval pipeline drugs, which indicates that drug repositioning has huge market potential and value. Computational technologies such as machine learning methods have accelerated the process of drug repositioning in the last few decades years. The repositioning potential of type 2 diabetes mellitus (T2DM) drugs for various diseases such as cancer, neurodegenerative diseases, and cardiovascular diseases have been widely studied. Hence, the related summary about repurposing antidiabetic drugs is of great significance. In this review, we focus on the machine learning methods for the development of new T2DM drugs and give an overview of the repurposing potential of the existing antidiabetic agents.
Collapse
Affiliation(s)
- Sha Zhu
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qifeng Bai
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
- Corresponding author.
| | | | | |
Collapse
|
29
|
Xiong G, Yang Z, Yi J, Wang N, Wang L, Zhu H, Wu C, Lu A, Chen X, Liu S, Hou T, Cao D. DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res 2021; 50:D1200-D1207. [PMID: 34634800 PMCID: PMC8728114 DOI: 10.1093/nar/gkab880] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023] Open
Abstract
Drug-drug interaction (DDI) can trigger many adverse effects in patients and has emerged as a threat to medicine and public health. Despite the continuous information accumulation of clinically significant DDIs, there are few open-access knowledge systems dedicated to the curation of DDI associations. To facilitate the clinicians to screen for dangerous drug combinations and improve health systems, we present DDInter, a curated DDI database with comprehensive data, practical medication guidance, intuitive function interface, and powerful visualization to the scientific community. Currently, DDInter contains about 0.24M DDI associations connecting 1833 approved drugs (1972 entities). Each drug is annotated with basic chemical and pharmacological information and its interaction network. For DDI associations, abundant and professional annotations are provided, including severity, mechanism description, strategies for managing potential side effects, alternative medications, etc. The drug entities and interaction entities are efficiently cross-linked. In addition to basic query and browsing, the prescription checking function is developed to facilitate clinicians to decide whether drugs combinations can be used safely. It can also be used for informatics-based DDI investigation and evaluation of other prediction frameworks. We hope that DDInter will prove useful in improving clinical decision-making and patient safety. DDInter is freely available, without registration, at http://ddinter.scbdd.com/.
Collapse
Affiliation(s)
- Guoli Xiong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China
| | - Zhijiang Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China
| | - Jiacai Yi
- College of Computer, National University of Defense Technology, Changsha 410073, Hunan, China
| | - Ningning Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lei Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China
| | - Huimin Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China
| | - Chengkun Wu
- College of Computer, National University of Defense Technology, Changsha 410073, Hunan, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dongsheng Cao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.,Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China.,Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|