1
|
Li D, Xiao Z, Sun H, Jiang X, Zhao W, Shen X. Prediction of Drug-Disease Associations Based on Multi-Kernel Deep Learning Method in Heterogeneous Graph Embedding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:120-128. [PMID: 38051617 DOI: 10.1109/tcbb.2023.3339189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Computational drug repositioning can identify potential associations between drugs and diseases. This technology has been shown to be effective in accelerating drug development and reducing experimental costs. Although there has been plenty of research for this task, existing methods are deficient in utilizing complex relationships among biological entities, which may not be conducive to subsequent simulation of drug treatment processes. In this article, we propose a heterogeneous graph embedding method called HMLKGAT to infer novel potential drugs for diseases. More specifically, we first construct a heterogeneous information network by combining drug-disease, drug-protein and disease-protein biological networks. Then, a multi-layer graph attention model is utilized to capture the complex associations in the network to derive representations for drugs and diseases. Finally, to maintain the relationship of nodes in different feature spaces, we propose a multi-kernel learning method to transform and combine the representations. Experimental results demonstrate that HMLKGAT outperforms six state-of-the-art methods in drug-related disease prediction, and case studies of five classical drugs further demonstrate the effectiveness of HMLKGAT.
Collapse
|
2
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|