Li L, Xiang Y, Hao J. Biomedical event causal relation extraction with deep knowledge fusion and Roberta-based data augmentation.
Methods 2024;
231:8-14. [PMID:
39241919 DOI:
10.1016/j.ymeth.2024.08.007]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Biomedical event causal relation extraction (BECRE), as a subtask of biomedical information extraction, aims to extract event causal relation facts from unstructured biomedical texts and plays an essential role in many downstream tasks. The existing works have two main problems: i) Only shallow features are limited in helping the model establish potential relationships between biomedical events. ii) Using the traditional oversampling method to solve the data imbalance problem of the BECRE tasks ignores the requirements for data diversifying. This paper proposes a novel biomedical event causal relation extraction method to solve the above problems using deep knowledge fusion and Roberta-based data augmentation. To address the first problem, we fuse deep knowledge, including structural event representation and entity relation path, for establishing potential semantic connections between biomedical events. We use the Graph Convolutional Neural network (GCN) and the predicated tensor model to acquire structural event representation, and entity relation paths are encoded based on the external knowledge bases (GTD, CDR, CHR, GDA and UMLS). We introduce the triplet attention mechanism to fuse structural event representation and entity relation path information. Besides, this paper proposes the Roberta-based data augmentation method to address the second problem, some words of biomedical text, except biomedical events, are masked proportionally and randomly, and then pre-trained Roberta generates data instances for the imbalance BECRE dataset. Extensive experimental results on Hahn-Powell's and BioCause datasets confirm that the proposed method achieves state-of-the-art performance compared to current advances.
Collapse