1
|
Gwak GT, Kim JH, Hwang UJ, Jung SH. Ensemble approach for predicting the diagnosis of osteoarthritis using physical activity factors. J Eval Clin Pract 2024. [PMID: 39440954 DOI: 10.1111/jep.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative disease of the joints. Risk factors for OA include non-modifiable factors such as age and sex, as well as modifiable factors like physical activity. OBJECTIVES this study aimed to construct a soft voting ensemble model to predict OA diagnosis using variables related to individual characteristics and physical activity and identify important variables in constructing the model through permutation importance. METHODS By using the recursive feature elimination, cross-validated technique, the variables with the best predictive performance were selected among variables, and an ensemble model combining RandomForest, XGBoost, and LightGBM algorithms was constructed. The predictive performance and permutation importance of each variable were evaluated. RESULTS The variables selected to construct the model were age, sex, grip strength, and quality of life, and the accuracy of the ensemble model was 0.828. The most important variable in constructing the model was age (0.199), followed by grip strength (0.053), quality of life (0.043), and sex (0.034). CONCLUSION The performance of the model for predicting OA was relatively good. If this model is continuously used and updated, it could be used to predict OA diagnosis, and the predictive performance of the OA model may be further improved.
Collapse
Affiliation(s)
- Gyeong-Tae Gwak
- Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Laboratory of KEMA AI Research (KAIR), Yonsei University, 1, Yeonsedae-gil, Maeji-ri, Heungeop-myeon, Wonju-si, Gangwon-do, Wonju, South Korea
| | - Jun-Hee Kim
- Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Laboratory of KEMA AI Research (KAIR), Yonsei University, 1, Yeonsedae-gil, Maeji-ri, Heungeop-myeon, Wonju-si, Gangwon-do, Wonju, South Korea
| | - Ui-Jae Hwang
- Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Laboratory of KEMA AI Research (KAIR), Yonsei University, 1, Yeonsedae-gil, Maeji-ri, Heungeop-myeon, Wonju-si, Gangwon-do, Wonju, South Korea
| | - Sung-Hoon Jung
- Division of Health Science, Department of Physical Therapy, Baekseok University, 1, Baekseokdaehak-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do, Cheonan, South Korea
| |
Collapse
|
2
|
Nawaz M, Uvaliyev A, Bibi K, Wei H, Abaxi SMD, Masood A, Shi P, Ho HP, Yuan W. Unraveling the complexity of Optical Coherence Tomography image segmentation using machine and deep learning techniques: A review. Comput Med Imaging Graph 2023; 108:102269. [PMID: 37487362 DOI: 10.1016/j.compmedimag.2023.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Optical Coherence Tomography (OCT) is an emerging technology that provides three-dimensional images of the microanatomy of biological tissue in-vivo and at micrometer-scale resolution. OCT imaging has been widely used to diagnose and manage various medical diseases, such as macular degeneration, glaucoma, and coronary artery disease. Despite its wide range of applications, the segmentation of OCT images remains difficult due to the complexity of tissue structures and the presence of artifacts. In recent years, different approaches have been used for OCT image segmentation, such as intensity-based, region-based, and deep learning-based methods. This paper reviews the major advances in state-of-the-art OCT image segmentation techniques. It provides an overview of the advantages and limitations of each method and presents the most relevant research works related to OCT image segmentation. It also provides an overview of existing datasets and discusses potential clinical applications. Additionally, this review gives an in-depth analysis of machine learning and deep learning approaches for OCT image segmentation. It outlines challenges and opportunities for further research in this field.
Collapse
Affiliation(s)
- Mehmood Nawaz
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Adilet Uvaliyev
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Khadija Bibi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hao Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sai Mu Dalike Abaxi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Anum Masood
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peilun Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Khan TM, Naqvi SS, Robles-Kelly A, Razzak I. Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning. Neural Netw 2023; 165:310-320. [PMID: 37327578 DOI: 10.1016/j.neunet.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual dependencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies. Another key idea is training in adversarial settings for foreground segmentation improvement through optimization of the region-based scores. This novel strategy boosts the performance of the segmentation network in terms of the Dice score (and correspondingly Jaccard index) while keeping the number of trainable parameters comparatively low. We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE, demonstrating its superior performance as compared with competitive approaches elsewhere in the literature.
Collapse
Affiliation(s)
- Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Antonio Robles-Kelly
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, Australia; Defence Science and Technology Group, 5111, Edinburgh, SA, Australia
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Abdushkour H, Soomro TA, Ali A, Ali Jandan F, Jelinek H, Memon F, Althobiani F, Mohammed Ghonaim S, Irfan M. Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy. PLoS One 2023; 18:e0288792. [PMID: 37467245 DOI: 10.1371/journal.pone.0288792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Eye diseases such as diabetic retinopathy are progressive with various changes in the retinal vessels, and it is difficult to analyze the disease for future treatment. There are many computerized algorithms implemented for retinal vessel segmentation, but the tiny vessels drop off, impacting the performance of the overall algorithms. This research work contains the new image processing techniques such as enhancement filters, coherence filters and binary thresholding techniques to handle the different color retinal fundus image problems to achieve a vessel image that is well-segmented, and the proposed algorithm has improved performance over existing work. Our developed technique incorporates morphological techniques to address the center light reflex issue. Additionally, to effectively resolve the problem of insufficient and varying contrast, our developed technique employs homomorphic methods and Wiener filtering. Coherent filters are used to address the coherence issue of the retina vessels, and then a double thresholding technique is applied with image reconstruction to achieve a correctly segmented vessel image. The results of our developed technique were evaluated using the STARE and DRIVE datasets and it achieves an accuracy of about 0.96 and a sensitivity of 0.81. The performance obtained from our proposed method proved the capability of the method which can be used by ophthalmology experts to diagnose ocular abnormalities and recommended for further treatment.
Collapse
Affiliation(s)
- Hesham Abdushkour
- Nautical Science Deptartment, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Toufique A Soomro
- Department of Electronic Engineering, Quaid-e-Awam University of Engineering, Science and Technology Larkana Campus, Sukkur, Pakistan
| | - Ahmed Ali
- Eletrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Fayyaz Ali Jandan
- Eletrical Engineering Department, Quaid-e-Awam University of Engineering, Science and Technology Larkana Campus, Sukkur, Pakistan
| | - Herbert Jelinek
- Health Engineering Innovation Center and biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Farida Memon
- Department of Electronic Engineering, Mehran University, Janshoro, Jamshoro, Pakistan
| | - Faisal Althobiani
- Marine Engineering Department, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Saleh Mohammed Ghonaim
- Marine Engineering Department, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
5
|
Islam MT, Khan HA, Naveed K, Nauman A, Gulfam SM, Kim SW. LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images. ELECTRONICS 2023; 12:1786. [DOI: 10.3390/electronics12081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This paper presents LUVS-Net, which is a lightweight convolutional network for retinal vessel segmentation in fundus images that is designed for resource-constrained devices that are typically unable to meet the computational requirements of large neural networks. The computational challenges arise due to low-quality retinal images, wide variance in image acquisition conditions and disparities in intensity. Consequently, the training of existing segmentation methods requires a multitude of trainable parameters for the training of networks, resulting in computational complexity. The proposed Lightweight U-Net for Vessel Segmentation Network (LUVS-Net) can achieve high segmentation performance with only a few trainable parameters. This network uses an encoder–decoder framework in which edge data are transposed from the first layers of the encoder to the last layer of the decoder, massively improving the convergence latency. Additionally, LUVS-Net’s design allows for a dual-stream information flow both inside as well as outside of the encoder–decoder pair. The network width is enhanced using group convolutions, which allow the network to learn a larger number of low- and intermediate-level features. Spatial information loss is minimized using skip connections, and class imbalances are mitigated using dice loss for pixel-wise classification. The performance of the proposed network is evaluated on the publicly available retinal blood vessel datasets DRIVE, CHASE_DB1 and STARE. LUVS-Net proves to be quite competitive, outperforming alternative state-of-the-art segmentation methods and achieving comparable accuracy using trainable parameters that are reduced by two to three orders of magnitude compared with those of comparative state-of-the-art methods.
Collapse
Affiliation(s)
- Muhammad Talha Islam
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Haroon Ahmed Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ali Nauman
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Sardar Muhammad Gulfam
- Department of Electrical and Computer Engineering, Abbottabad Campus, COMSATS University Islamabad (CUI), Abbottabad 22060, Pakistan
| | - Sung Won Kim
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
6
|
Leveraging image complexity in macro-level neural network design for medical image segmentation. Sci Rep 2022; 12:22286. [PMID: 36566313 PMCID: PMC9790020 DOI: 10.1038/s41598-022-26482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Recent progress in encoder-decoder neural network architecture design has led to significant performance improvements in a wide range of medical image segmentation tasks. However, state-of-the-art networks for a given task may be too computationally demanding to run on affordable hardware, and thus users often resort to practical workarounds by modifying various macro-level design aspects. Two common examples are downsampling of the input images and reducing the network depth or size to meet computer memory constraints. In this paper, we investigate the effects of these changes on segmentation performance and show that image complexity can be used as a guideline in choosing what is best for a given dataset. We consider four statistical measures to quantify image complexity and evaluate their suitability on ten different public datasets. For the purpose of our illustrative experiments, we use DeepLabV3+ (deep large-size), M2U-Net (deep lightweight), U-Net (shallow large-size), and U-Net Lite (shallow lightweight). Our results suggest that median frequency is the best complexity measure when deciding on an acceptable input downsampling factor and using a deep versus shallow, large-size versus lightweight network. For high-complexity datasets, a lightweight network running on the original images may yield better segmentation results than a large-size network running on downsampled images, whereas the opposite may be the case for low-complexity images.
Collapse
|
7
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|