Zhong T, Li D, Wang J, Xu J, An Z, Zhu Y. Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements.
SENSORS (BASEL, SWITZERLAND) 2021;
21:5385. [PMID:
34450825 PMCID:
PMC8398355 DOI:
10.3390/s21165385]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022]
Abstract
Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature extraction for sEMG signals, and there exists the fact that only a small variety of rehabilitation movements can be distinguished, and the classification accuracy is easily affected. To solve these dilemmas, first, a multiscale time-frequency information fusion representation method (MTFIFR) is proposed to obtain the time-frequency features of multichannel sEMG signals. Then, this paper designs the multiple feature fusion network (MFFN), which aims at strengthening the ability of feature extraction. Finally, a deep belief network (DBN) was introduced as the classification model of the MFFN to boost the generalization performance for more types of upper-limb movements. In the experiments, 12 kinds of upper-limb rehabilitation actions were recognized utilizing four sEMG sensors. The maximum identification accuracy was 86.10% and the average classification accuracy of the proposed MFFN was 73.49%, indicating that the time-frequency representation approach combined with the MFFN is superior to the traditional machine learning and convolutional neural network.
Collapse