1
|
Liu Y, Wu Q, Zhou L, Liu Y, Li C, Wei Z, Peng W, Yue Y, Zhu X. Disentangled similarity graph attention heterogeneous biological memory network for predicting disease-associated miRNAs. BMC Genomics 2024; 25:1161. [PMID: 39623332 PMCID: PMC11610307 DOI: 10.1186/s12864-024-11078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The association between MicroRNAs (miRNAs) and diseases is crucial in treating and exploring many diseases or cancers. Although wet-lab methods for predicting miRNA-disease associations (MDAs) are effective, they are often expensive and time-consuming. Significant advancements have been made using Graph Neural Network-based methods (GNN-MDAs) to address these challenges. However, these methods still face limitations, such as not considering nodes' deep-level similarity associations and hierarchical learning patterns. Additionally, current models do not retain the memory of previously learned heterogeneous historical information about miRNAs or diseases, only focusing on parameter learning without the capability to remember heterogeneous associations. RESULTS This study introduces the K-means disentangled high-level biological similarity to utilize potential hierarchical relationships fully and proposes a Graph Attention Heterogeneous Biological Memory Network architecture (DiGAMN) with memory capabilities. Extensive experiments were conducted across four datasets, comparing the DiGAMN model and its disentangling method against ten state-of-the-art non-disentangled methods and six traditional GNNs. DiGAMN excelled, achieving AUC scores of 96.35%, 96.10%, 96.01%, and 95.89% on the Data1 to Data4 datasets, respectively, surpassing all other models. These results confirm the superior performance of DiGAMN and its disentangling method. Additionally, various ablation studies were conducted to validate the contributions of different modules within the framework, and's encoding statuses and memory units of DiGAMN were visualized to explore the utility and functionality of its modules. Case studies confirmed the effectiveness of DiGAMN's predictions, identifying several new disease-associated miRNAs. CONCLUSIONS DiGAMN introduces the use of a disentangled biological similarity approach for the first time and successfully constructs a Disentangled Graph Attention Heterogeneous Biological Memory Network model. This network can learn disentangled representations of similarity information and effectively store the potential biological entanglement information of miRNAs and diseases. By integrating disentangled similarity information with a heterogeneous attention memory network, DiGAMN enhances the model's ability to capture and utilize complex underlying biological data, significantly outperforming many existing models. The concepts used in this method also provide new perspectives for predicting miRNAs associated with diseases.
Collapse
Affiliation(s)
- Yinbo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Le Zhou
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Liu
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- China University of Petroleum, Beijing, Beijing, 102249, China
| | - Chao Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhuoyu Wei
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Peng
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yi Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Liu T, Wang S, Zhang Y, Li Y, Liu Y, Huang S. TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction. J Chem Inf Model 2024; 64:8641-8654. [PMID: 39486090 DOI: 10.1021/acs.jcim.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
Collapse
Affiliation(s)
- Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yingye Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shiyuan Huang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
3
|
Wang S, Liu JX, Li F, Wang J, Gao YL. M 3HOGAT: A Multi-View Multi-Modal Multi-Scale High-Order Graph Attention Network for Microbe-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:6259-6267. [PMID: 39012741 DOI: 10.1109/jbhi.2024.3429128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Numerous scientific studies have found a link between diverse microorganisms in the human body and complex human diseases. Because traditional experimental approaches are time-consuming and expensive, using computational methods to identify microbes correlated with diseases is critical. In this paper, a new microbe-disease association prediction model is proposed that combines a multi-view multi-modal network and a multi-scale feature fusion mechanism, called M3HOGAT. Firstly, a microbe-disease association network and multiple similarity views are constructed based on multi-source information. Then, consider that neighbor information from disparate orders might be more adept at learning node representations. Consequently, the higher-order graph attention network (HOGAT) is devised to aggregate neighbor information from disparate orders to extract microbe and disease features from different networks and views. Given that the embedding features of microbe and disease from different views possess varying importance, a multi-scale feature fusion mechanism is employed to learn their interaction information, thereby generating the final feature of microbes and diseases. Finally, an inner product decoder is used to reconstruct the microbe-disease association matrix. Compared with five state-of-the-art methods on the HMDAD and Disbiome datasets, the results of 5-fold cross-validations show that M3HOGAT achieves the best performance. Furthermore, case studies on asthma and obesity confirm the effectiveness of M3HOGAT in identifying potential disease-related microbes.
Collapse
|
4
|
Chen H, Chen K. Predicting disease-associated microbes based on similarity fusion and deep learning. Brief Bioinform 2024; 25:bbae550. [PMID: 39504483 PMCID: PMC11540060 DOI: 10.1093/bib/bbae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Increasing studies have revealed the critical roles of human microbiome in a wide variety of disorders. Identification of disease-associated microbes might improve our knowledge and understanding of disease pathogenesis and treatment. Computational prediction of microbe-disease associations would provide helpful guidance for further biomedical screening, which has received lots of research interest in bioinformatics. In this study, a deep learning-based computational approach entitled SGJMDA is presented for predicting microbe-disease associations. Specifically, SGJMDA first fuses multiple similarities of microbes and diseases using a nonlinear strategy, and extracts feature information from homogeneous networks composed of the fused similarities via a graph convolution network. Second, a heterogeneous microbe-disease network is built to further capture the structural information of microbes and diseases by employing multi-neighborhood graph convolution network and jumping knowledge network. Finally, potential microbe-disease associations are inferred through computing the linear correlation coefficients of their embeddings. Results from cross-validation experiments show that SGJMDA outperforms 6 state-of-the-art computational methods. Furthermore, we carry out case studies on three important diseases using SGJMDA, in which 19, 20, and 11 predictions out of their top 20 results are successfully checked by the latest databases, respectively. The excellent performance of SGJMDA suggests that it could be a valuable and promising tool for inferring disease-associated microbes.
Collapse
Affiliation(s)
- Hailin Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Kuan Chen
- School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
5
|
Shi K, Huang K, Li L, Liu Q, Zhang Y, Zheng H. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion. Front Microbiol 2024; 15:1438942. [PMID: 39355422 PMCID: PMC11443509 DOI: 10.3389/fmicb.2024.1438942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 10/03/2024] Open
Abstract
Background Clinical studies have demonstrated that microbes play a crucial role in human health and disease. The identification of microbe-disease interactions can provide insights into the pathogenesis and promote the diagnosis, treatment, and prevention of disease. Although a large number of computational methods are designed to screen novel microbe-disease associations, the accurate and efficient methods are still lacking due to data inconsistence, underutilization of prior information, and model performance. Methods In this study, we proposed an improved deep learning-based framework, named GIMMDA, to identify latent microbe-disease associations, which is based on graph autoencoder and inductive matrix completion. By co-training the information from microbe and disease space, the new representations of microbes and diseases are used to reconstruct microbe-disease association in the end-to-end framework. In particular, a similarity fusion strategy is conducted to improve prediction performance. Results The experimental results show that the performance of GIMMDA is competitive with that of existing state-of-the-art methods on 3 datasets (i.e., HMDAD, Disbiome, and multiMDA). In particular, it performs best with the area under the receiver operating characteristic curve (AUC) of 0.9735, 0.9156, 0.9396 on abovementioned 3 datasets, respectively. And the result also confirms that different similarity fusions can improve the prediction performance. Furthermore, case studies on two diseases, i.e., asthma and obesity, validate the effectiveness and reliability of our proposed model. Conclusion The proposed GIMMDA model show a strong capability in predicting microbe-disease associations. We expect that GPUDMDA will help identify potential microbe-related diseases in the future.
Collapse
Affiliation(s)
- Kai Shi
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, China
| | - Kai Huang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Qiaohui Liu
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yi Zhang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huilin Zheng
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
6
|
Wen S, Liu Y, Yang G, Chen W, Wu H, Zhu X, Wang Y. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations. Sci Rep 2024; 14:20490. [PMID: 39227405 PMCID: PMC11371806 DOI: 10.1038/s41598-024-68897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
MicroRNAs (miRNAs) are a key class of endogenous non-coding RNAs that play a pivotal role in regulating diseases. Accurately predicting the intricate relationships between miRNAs and diseases carries profound implications for disease diagnosis, treatment, and prevention. However, these prediction tasks are highly challenging due to the complexity of the underlying relationships. While numerous effective prediction models exist for validating these associations, they often encounter information distortion due to limitations in efficiently retaining information during the encoding-decoding process. Inspired by Multi-layer Heterogeneous Graph Transformer and Machine Learning XGboost classifier algorithm, this study introduces a novel computational approach based on multi-layer heterogeneous encoder-machine learning decoder structure for miRNA-disease association prediction (MHXGMDA). First, we employ the multi-view similarity matrices as the input coding for MHXGMDA. Subsequently, we utilize the multi-layer heterogeneous encoder to capture the embeddings of miRNAs and diseases, aiming to capture the maximum amount of relevant features. Finally, the information from all layers is concatenated to serve as input to the machine learning classifier, ensuring maximal preservation of encoding details. We conducted a comprehensive comparison of seven different classifier models and ultimately selected the XGBoost algorithm as the decoder. This algorithm leverages miRNA embedding features and disease embedding features to decode and predict the association scores between miRNAs and diseases. We applied MHXGMDA to predict human miRNA-disease associations on two benchmark datasets. Experimental findings demonstrate that our approach surpasses several leading methods in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve.
Collapse
Affiliation(s)
- SiJian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - YinBo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Guang Yang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - WenXi Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - HaiTao Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - XiaoLei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
| | - YongMei Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Hefei, 230036, China.
| |
Collapse
|
7
|
Chen R, Xie G, Lin Z, Gu G, Yu Y, Yu J, Liu Z. Predicting Microbe-Disease Associations Based on a Linear Neighborhood Label Propagation Method with Multi-order Similarity Fusion Learning. Interdiscip Sci 2024; 16:345-360. [PMID: 38436840 DOI: 10.1007/s12539-024-00607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
Computational approaches employed for predicting potential microbe-disease associations often rely on similarity information between microbes and diseases. Therefore, it is important to obtain reliable similarity information by integrating multiple types of similarity information. However, existing similarity fusion methods do not consider multi-order fusion of similarity networks. To address this problem, a novel method of linear neighborhood label propagation with multi-order similarity fusion learning (MOSFL-LNP) is proposed to predict potential microbe-disease associations. Multi-order fusion learning comprises two parts: low-order global learning and high-order feature learning. Low-order global learning is used to obtain common latent features from multiple similarity sources. High-order feature learning relies on the interactions between neighboring nodes to identify high-order similarities and learn deeper interactive network structures. Coefficients are assigned to different high-order feature learning modules to balance the similarities learned from different orders and enhance the robustness of the fusion network. Overall, by combining low-order global learning with high-order feature learning, multi-order fusion learning can capture both the shared and unique features of different similarity networks, leading to more accurate predictions of microbe-disease associations. In comparison to six other advanced methods, MOSFL-LNP exhibits superior prediction performance in the leave-one-out cross-validation and 5-fold validation frameworks. In the case study, the predicted 10 microbes associated with asthma and type 1 diabetes have an accuracy rate of up to 90% and 100%, respectively.
Collapse
Affiliation(s)
- Ruibin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guobo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhiyi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Guosheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Yi Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Junrui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Kang WY, Gao YL, Wang Y, Li F, Liu JX. KFDAE: CircRNA-Disease Associations Prediction Based on Kernel Fusion and Deep Auto-Encoder. IEEE J Biomed Health Inform 2024; 28:3178-3185. [PMID: 38408006 DOI: 10.1109/jbhi.2024.3369650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
CircRNA has been proved to play an important role in the diseases diagnosis and treatment. Considering that the wet-lab is time-consuming and expensive, computational methods are viable alternative in these years. However, the number of circRNA-disease associations (CDAs) that can be verified is relatively few, and some methods do not take full advantage of dependencies between attributes. To solve these problems, this paper proposes a novel method based on Kernel Fusion and Deep Auto-encoder (KFDAE) to predict the potential associations between circRNAs and diseases. Firstly, KFDAE uses a non-linear method to fuse the circRNA similarity kernels and disease similarity kernels. Then the vectors are connected to make the positive and negative sample sets, and these data are send to deep auto-encoder to reduce dimension and extract features. Finally, three-layer deep feedforward neural network is used to learn features and gain the prediction score. The experimental results show that compared with existing methods, KFDAE achieves the best performance. In addition, the results of case studies prove the effectiveness and practical significance of KFDAE, which means KFDAE is able to capture more comprehensive information and generate credible candidate for subsequent wet-lab.
Collapse
|
9
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
10
|
Yu S, Wang H, Li J, Zhao J, Liang C, Sun Y. A Multi-Relational Graph Encoder Network for Fine-Grained Prediction of MiRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:45-56. [PMID: 38015672 DOI: 10.1109/tcbb.2023.3335007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
MicroRNAs (miRNAs) are critical in diagnosing and treating various diseases. Automatically demystifying the interdependent relationships between miRNAs and diseases has recently made remarkable progress, but their fine-grained interactive relationships still need to be explored. We propose a multi-relational graph encoder network for fine-grained prediction of miRNA-disease associations (MRFGMDA), which uses practical and current datasets to construct a multi-relational graph encoder network to predict disease-related miRNAs and their specific relationship types (upregulation, downregulation, or dysregulation). We evaluated MRFGMDA and found that it accurately predicted miRNA-disease associations, which could have far-reaching implications for clinical medical analysis, early diagnosis, prevention, and treatment. Case analyses, Kaplan-Meier survival analysis, expression difference analysis, and immune infiltration analysis further demonstrated the effectiveness and feasibility of MRFGMDA in uncovering potential disease-related miRNAs. Overall, our work represents a significant step toward improving the prediction of miRNA-disease associations using a fine-grained approach could lead to more accurate diagnosis and treatment of diseases.
Collapse
|
11
|
Wang L, Wang Y, Xuan C, Zhang B, Wu H, Gao J. Predicting potential microbe-disease associations based on multi-source features and deep learning. Brief Bioinform 2023; 24:bbad255. [PMID: 37406190 DOI: 10.1093/bib/bbad255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.
Collapse
Affiliation(s)
- Liugen Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenxu Xuan
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bai Zhang
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanwen Wu
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Shi K, Li L, Wang Z, Chen H, Chen Z, Fang S. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy. Front Neurosci 2023; 16:1124315. [PMID: 36741060 PMCID: PMC9892757 DOI: 10.3389/fnins.2022.1124315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The interactions between the microbiota and the human host can affect the physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating investigations indicate that the imbalance of microbial community is closely related to the occurrence and development of diseases. Thus, the identification of potential links between microbes and diseases can provide insight into the pathogenesis of diseases. In this study, we propose a deep learning framework (MDAGCAN) based on graph convolutional attention network to identify potential microbe-disease associations. In MDAGCAN, we first construct a heterogeneous network consisting of the known microbe-disease associations and multi-similarity fusion networks of microbes and diseases. Then, the node embeddings considering the neighbor information of the heterogeneous network are learned by applying graph convolutional layers and graph attention layers. Finally, a bilinear decoder using node embedding representations reconstructs the unknown microbe-disease association. Experiments show that our method achieves reliable performance with average AUCs of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted microbes are verified by published literatures, respectively. In conclusion, our method displays effective and reliable prediction performance and can be expected to predict unknown microbe-disease associations facilitating disease diagnosis and prevention.
Collapse
Affiliation(s)
- Kai Shi
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Zhengfeng Wang
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huazhou Chen
- College of Science, Guilin University of Technology, Guilin, China
| | - Zilin Chen
- Department of Developmental and Behavioural Pediatric Department & Department of Child Primary Care, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuanfeng Fang
- Department of Children Health Care, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Tan J, Li X, Zhang L, Du Z. Recent advances in machine learning methods for predicting LncRNA and disease associations. Front Cell Infect Microbiol 2022; 12:1071972. [PMID: 36530425 PMCID: PMC9748103 DOI: 10.3389/fcimb.2022.1071972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in almost the entire cell life cycle through different mechanisms and play an important role in many key biological processes. Mutations and dysregulation of lncRNAs have been implicated in many complex human diseases. Therefore, identifying the relationship between lncRNAs and diseases not only contributes to biologists' understanding of disease mechanisms, but also provides new ideas and solutions for disease diagnosis, treatment, prognosis and prevention. Since the existing experimental methods for predicting lncRNA-disease associations (LDAs) are expensive and time consuming, machine learning methods for predicting lncRNA-disease associations have become increasingly popular among researchers. In this review, we summarize some of the human diseases studied by LDAs prediction models, association and similarity features of LDAs prediction, performance evaluation methods of models and some advanced machine learning prediction models of LDAs. Finally, we discuss the potential limitations of machine learning-based methods for LDAs prediction and provide some ideas for designing new prediction models.
Collapse
|
14
|
Guan J, Zhang ZG, Liu Y, Wang M. A novel bi-directional heterogeneous network selection method for disease and microbial association prediction. BMC Bioinformatics 2022; 23:483. [PMID: 36376802 PMCID: PMC9664813 DOI: 10.1186/s12859-022-04961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms in the human body have a great impact on human health. Therefore, mastering the potential relationship between microorganisms and diseases is helpful to understand the pathogenesis of diseases and is of great significance to the prevention, diagnosis, and treatment of diseases. In order to predict the potential microbial disease relationship, we propose a new computational model. Firstly, a bi-directional heterogeneous microbial disease network is constructed by integrating multiple similarities, including Gaussian kernel similarity, microbial function similarity, disease semantic similarity, and disease symptom similarity. Secondly, the neighbor information of the network is learned by random walk; Finally, the selection model is used for information aggregation, and the microbial disease node pair is analyzed. Our method is superior to the existing methods in leave-one-out cross-validation and five-fold cross-validation. Moreover, in case studies of different diseases, our method was proven to be effective.
Collapse
|
15
|
Zhang Y, Wang Y, Li X, Liu Y, Chen M. Identifying lncRNA–disease association based on GAT multiple-operator aggregation and inductive matrix completion. Front Genet 2022; 13:1029300. [DOI: 10.3389/fgene.2022.1029300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Computable models as a fundamental candidate for traditional biological experiments have been applied in inferring lncRNA–disease association (LDA) for many years, without time-consuming and laborious limitations. However, sparsity inherently existing in known heterogeneous bio-data is an obstacle to computable models to improve prediction accuracy further. Therefore, a new computational model composed of multiple mechanisms for lncRNA–disease association (MM-LDA) prediction was proposed, based on the fusion of the graph attention network (GAT) and inductive matrix completion (IMC). MM-LDA has two key steps to improve prediction accuracy: first, a multiple-operator aggregation was designed in the n-heads attention mechanism of the GAT. With this step, features of lncRNA nodes and disease nodes were enhanced. Second, IMC was introduced into the enhanced node features obtained in the first step, and then the LDA network was reconstructed to solve the cold start problem when data deficiency of the entire row or column happened in a known association matrix. Our MM-LDA achieved the following progress: first, using the Adam optimizer that adaptively adjusted the model learning rate could increase the convergent speed and not fall into local optima as well. Second, more excellent predictive ability was achieved against other similar models (with an AUC value of 0.9395 and an AUPR value of 0.8057 obtained from 5-fold cross-validation). Third, a 6.45% lower time cost was consumed against the advanced model GAMCLDA. In short, our MM-LDA achieved a more comprehensive prediction performance in terms of prediction accuracy and time cost.
Collapse
|
16
|
Lu S, Liang Y, Li L, Liao S, Ouyang D. Inferring human miRNA–disease associations via multiple kernel fusion on GCNII. Front Genet 2022; 13:980497. [PMID: 36134032 PMCID: PMC9483142 DOI: 10.3389/fgene.2022.980497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence shows that the occurrence of human complex diseases is closely related to the mutation and abnormal expression of microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms, which makes it a promising target for drug discovery and disease diagnosis. Therefore, predicting the potential miRNA-disease associations has practical significance. In this paper, we proposed an miRNA–disease association predicting method based on multiple kernel fusion on Graph Convolutional Network via Initial residual and Identity mapping (GCNII), called MKFGCNII. Firstly, we built a heterogeneous network of miRNAs and diseases to extract multi-layer features via GCNII. Secondly, multiple kernel fusion method was applied to weight fusion of embeddings at each layer. Finally, Dual Laplacian Regularized Least Squares was used to predict new miRNA–disease associations by the combined kernel in miRNA and disease spaces. Compared with the other methods, MKFGCNII obtained the highest AUC value of 0.9631. Code is available at https://github.com/cuntjx/bioInfo.
Collapse
Affiliation(s)
- Shanghui Lu
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- School of Mathematics and Physics, Hechi University, Hechi, China
| | - Yong Liang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| | - Le Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Dong Ouyang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
17
|
Yao D, Zhang T, Zhan X, Zhang S, Zhan X, Zhang C. Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations. Front Genet 2022; 13:995532. [PMID: 36092871 PMCID: PMC9448985 DOI: 10.3389/fgene.2022.995532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
More and more evidences have showed that the unnatural expression of long non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore, accurate identification of disease-related lncRNAs can help to understand lncRNA expression at the molecular level and to explore more effective treatments for diseases. Plenty of lncRNA-disease association prediction models have been raised but it is still a challenge to recognize unknown lncRNA-disease associations. In this work, we have proposed a computational model for predicting lncRNA-disease associations based on geometric complement heterogeneous information and random forest. Firstly, geometric complement heterogeneous information was used to integrate lncRNA-miRNA interactions and miRNA-disease associations verified by experiments. Secondly, lncRNA and disease features consisted of their respective similarity coefficients were fused into input feature space. Thirdly, an autoencoder was adopted to project raw high-dimensional features into low-dimension space to learn representation for lncRNAs and diseases. Finally, the low-dimensional lncRNA and disease features were fused into input feature space to train a random forest classifier for lncRNA-disease association prediction. Under five-fold cross-validation, the AUC (area under the receiver operating characteristic curve) is 0.9897 and the AUPR (area under the precision-recall curve) is 0.7040, indicating that the performance of our model is better than several state-of-the-art lncRNA-disease association prediction models. In addition, case studies on colon and stomach cancer indicate that our model has a good ability to predict disease-related lncRNAs.
Collapse
Affiliation(s)
- Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- *Correspondence: Dengju Yao,
| | - Tao Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaojuan Zhan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, China
| | - Shuli Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, Hospital of South University of Science and Technology, Shenzhen, China
| | - Chao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
18
|
Ouyang D, Miao R, Wang J, Liu X, Xie S, Ai N, Dang Q, Liang Y. Predicting Multiple Types of Associations Between miRNAs and Diseases Based on Graph Regularized Weighted Tensor Decomposition. Front Bioeng Biotechnol 2022; 10:911769. [PMID: 35910021 PMCID: PMC9335924 DOI: 10.3389/fbioe.2022.911769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies have indicated miRNAs lead to the occurrence and development of diseases through a variety of underlying mechanisms. Meanwhile, computational models can save time, minimize cost, and discover potential associations on a large scale. However, most existing computational models based on a matrix or tensor decomposition cannot recover positive samples well. Moreover, the high noise of biological similarity networks and how to preserve these similarity relationships in low-dimensional space are also challenges. To this end, we propose a novel computational framework, called WeightTDAIGN, to identify potential multiple types of miRNA–disease associations. WeightTDAIGN can recover positive samples well and improve prediction performance by weighting positive samples. WeightTDAIGN integrates more auxiliary information related to miRNAs and diseases into the tensor decomposition framework, focuses on learning low-rank tensor space, and constrains projection matrices by using the L2,1 norm to reduce the impact of redundant information on the model. In addition, WeightTDAIGN can preserve the local structure information in the biological similarity network by introducing graph Laplacian regularization. Our experimental results show that the sparser datasets, the more satisfactory performance of WeightTDAIGN can be obtained. Also, the results of case studies further illustrate that WeightTDAIGN can accurately predict the associations of miRNA–disease-type.
Collapse
Affiliation(s)
- Dong Ouyang
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Rui Miao
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Jianjun Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Institute of Intelligent Information Processing, Guangdong University of Technology, Guangzhou, China
| | - Ning Ai
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Qi Dang
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| |
Collapse
|
19
|
Liu Y, Yang H, Zheng C, Wang K, Yan J, Cao H, Zhang Y. NCP-BiRW: A Hybrid Approach for Predicting Long Noncoding RNA-Disease Associations by Network Consistency Projection and Bi-Random Walk. Front Genet 2022; 13:862272. [PMID: 35495166 PMCID: PMC9043107 DOI: 10.3389/fgene.2022.862272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play significant roles in the disease process. Understanding the pathological mechanisms of lncRNAs during the course of various diseases will help clinicians prevent and treat diseases. With the emergence of high-throughput techniques, many biological experiments have been developed to study lncRNA-disease associations. Because experimental methods are costly, slow, and laborious, a growing number of computational models have emerged. Here, we present a new approach using network consistency projection and bi-random walk (NCP-BiRW) to infer hidden lncRNA-disease associations. First, integrated similarity networks for lncRNAs and diseases were constructed by merging similarity information. Subsequently, network consistency projection was applied to calculate space projection scores for lncRNAs and diseases, which were then introduced into a bi-random walk method for association prediction. To test model performance, we employed 5- and 10-fold cross-validation, with the area under the receiver operating characteristic curve as the evaluation indicator. The computational results showed that our method outperformed the other five advanced algorithms. In addition, the novel method was applied to another dataset in the Mammalian ncRNA-Disease Repository (MNDR) database and showed excellent performance. Finally, case studies were carried out on atherosclerosis and leukemia to confirm the effectiveness of our method in practice. In conclusion, we could infer lncRNA-disease associations using the NCP-BiRW model, which may benefit biomedical studies in the future.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Mathematics, Changzhi Medical College, Changzhi, China
| | - Hong Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chu Zheng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ke Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jingjing Yan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongyan Cao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanbo Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
- School of Health and Service Management, Shanxi University of Chinese Medicine, Taiyuan, China
- *Correspondence:Yanbo Zhang,
| |
Collapse
|
20
|
Xu D, Xu H, Zhang Y, Gao R. Novel Collaborative Weighted Non-negative Matrix Factorization Improves Prediction of Disease-Associated Human Microbes. Front Microbiol 2022; 13:834982. [PMID: 35369503 PMCID: PMC8965656 DOI: 10.3389/fmicb.2022.834982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive clinical and biomedical studies have shown that microbiome plays a prominent role in human health. Identifying potential microbe–disease associations (MDAs) can help reveal the pathological mechanism of human diseases and be useful for the prevention, diagnosis, and treatment of human diseases. Therefore, it is necessary to develop effective computational models and reduce the cost and time of biological experiments. Here, we developed a novel machine learning-based joint framework called CWNMF-GLapRLS for human MDA prediction using the proposed collaborative weighted non-negative matrix factorization (CWNMF) technique and graph Laplacian regularized least squares. Especially, to fuse more similarity information, we calculated the functional similarity of microbes. To deal with missing values and effectively overcome the data sparsity problem, we proposed a collaborative weighted NMF technique to reconstruct the original association matrix. In addition, we developed a graph Laplacian regularized least-squares method for prediction. The experimental results of fivefold and leave-one-out cross-validation demonstrated that our method achieved the best performance by comparing it with 5 state-of-the-art methods on the benchmark dataset. Case studies further showed that the proposed method is an effective tool to predict potential MDAs and can provide more help for biomedical researchers.
Collapse
Affiliation(s)
- Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
- *Correspondence: Yusen Zhang,
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
- Rui Gao,
| |
Collapse
|
21
|
Sorkhi AG, Abbasi Z, Mobarakeh MI, Pirgazi J. Drug-target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization. BMC Bioinformatics 2021; 22:555. [PMID: 34789169 PMCID: PMC8597250 DOI: 10.1186/s12859-021-04464-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates. RESULTS In this paper, a new approach based on unifying matrix factorization and nuclear norm minimization is proposed to find a low-rank interaction. In this combined method, to solve the low-rank matrix approximation, the terms in the DTI problem are used in such a way that the nuclear norm regularized problem is optimized by a bilinear factorization based on Rank-Restricted Soft Singular Value Decomposition (RRSSVD). In the proposed method, adjacencies between drugs and targets are encoded by graphs. Drug-target interaction, drug-drug similarity, target-target, and combination of similarities have also been used as input. CONCLUSIONS The proposed method is evaluated on four benchmark datasets known as Enzymes (E), Ion channels (ICs), G protein-coupled receptors (GPCRs) and nuclear receptors (NRs) based on AUC, AUPR, and time measure. The results show an improvement in the performance of the proposed method compared to the state-of-the-art techniques.
Collapse
Affiliation(s)
- Ali Ghanbari Sorkhi
- Faculty of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, P.O. Box, 48518-78195 Behshahr, Iran
| | - Zahra Abbasi
- School of Medicine, Faculty of Medical Biotechnology, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Jamshid Pirgazi
- Faculty of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, P.O. Box, 48518-78195 Behshahr, Iran
| |
Collapse
|