1
|
Dixon D, Sattar H, Moros N, Kesireddy SR, Ahsan H, Lakkimsetti M, Fatima M, Doshi D, Sadhu K, Junaid Hassan M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus 2024; 16:e59954. [PMID: 38854327 PMCID: PMC11161909 DOI: 10.7759/cureus.59954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
This comprehensive literature review explores the transformative impact of artificial intelligence (AI) predictive analytics on healthcare, particularly in improving patient outcomes regarding disease progression, treatment response, and recovery rates. AI, encompassing capabilities such as learning, problem-solving, and decision-making, is leveraged to predict disease progression, optimize treatment plans, and enhance recovery rates through the analysis of vast datasets, including electronic health records (EHRs), imaging, and genetic data. The utilization of machine learning (ML) and deep learning (DL) techniques in predictive analytics enables personalized medicine by facilitating the early detection of conditions, precision in drug discovery, and the tailoring of treatment to individual patient profiles. Ethical considerations, including data privacy, bias, and accountability, emerge as vital in the responsible implementation of AI in healthcare. The findings underscore the potential of AI predictive analytics in revolutionizing clinical decision-making and healthcare delivery, emphasizing the necessity of ethical guidelines and continuous model validation to ensure its safe and effective use in augmenting human judgment in medical practice.
Collapse
Affiliation(s)
- Diny Dixon
- Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, IND
| | - Hina Sattar
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Natalia Moros
- Medicine, Pontifical Javeriana University Medical School, Bogotá, COL
| | | | - Huma Ahsan
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Madiha Fatima
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Dhruvi Doshi
- Medicine, Gujarat Cancer Society Medical College, Hospital & Research Centre, Ahmedabad, IND
| | | | | |
Collapse
|
2
|
Deng Y, Song T, Wang X, Chen Y, Huang J. Region fine-grained attention network for accurate bone age assessment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1857-1871. [PMID: 38454664 DOI: 10.3934/mbe.2024081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Bone age assessment plays a vital role in monitoring the growth and development of adolescents. However, it is still challenging to obtain precise bone age from hand radiography due to these problems: 1) Hand bone varies greatly and is always masked by the background; 2) the hand bone radiographs with successive ages offer high similarity. To solve such issues, a region fine-grained attention network (RFGA-Net) was proposed for bone age assessment, where the region aware attention (RAA) module was developed to distinguish the skeletal regions from the background by modeling global spatial dependency; then the fine-grained feature attention (FFA) module was devised to identify similar bone radiographs by recognizing critical fine-grained feature regions. The experimental results demonstrate that the proposed RFGA-Net shows the best performance on the Radiological Society of North America (RSNA) pediatric bone dataset, achieving the mean absolute error (MAE) of 3.34 and the root mean square error (RMSE) of 4.02, respectively.
Collapse
Affiliation(s)
- Yamei Deng
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ting Song
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xu Wang
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonglu Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jianwei Huang
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
3
|
Deng Y, Chen Y, He Q, Wang X, Liao Y, Liu J, Liu Z, Huang J, Song T. Bone age assessment from articular surface and epiphysis using deep neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13133-13148. [PMID: 37501481 DOI: 10.3934/mbe.2023585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bone age assessment is of great significance to genetic diagnosis and endocrine diseases. Traditional bone age diagnosis mainly relies on experienced radiologists to examine the regions of interest in hand radiography, but it is time-consuming and may even lead to a vast error between the diagnosis result and the reference. The existing computer-aided methods predict bone age based on general regions of interest but do not explore specific regions of interest in hand radiography. This paper aims to solve such problems by performing bone age prediction on the articular surface and epiphysis from hand radiography using deep convolutional neural networks. The articular surface and epiphysis datasets are established from the Radiological Society of North America (RSNA) pediatric bone age challenge, where the specific feature regions of the articular surface and epiphysis are manually segmented from hand radiography. Five convolutional neural networks, i.e., ResNet50, SENet, DenseNet-121, EfficientNet-b4, and CSPNet, are employed to improve the accuracy and efficiency of bone age diagnosis in clinical applications. Experiments show that the best-performing model can yield a mean absolute error (MAE) of 7.34 months on the proposed articular surface and epiphysis datasets, which is more accurate and fast than the radiologists. The project is available at https://github.com/YameiDeng/BAANet/, and the annotated dataset is also published at https://doi.org/10.5281/zenodo.7947923.
Collapse
Affiliation(s)
- Yamei Deng
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yonglu Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qian He
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xu Wang
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Liao
- School of physics, electronics and electrical engineering, Xiangnan University, Chenzhou 423000, China
| | - Jue Liu
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhaoran Liu
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jianwei Huang
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ting Song
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
4
|
Reji M, Joseph C, Nancy P, Lourdes Mary A. An intrusion detection system based on hybrid machine learning classifier. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intrusion detection systems (IDS) can be used to detect irregularities in network traffic to improve network security and protect data and systems. From 2.4 times in 2018 to three times in 2023, the number of devices linked to IP networks is predicted to outnumber the total population of the world. In 2020, approximately 1.5 billion cyber-attacks on Internet of Things (IoT) devices have been reported. Classification of these attacks in the IoT network is the major objective of this research. This research proposes a hybrid machine learning model using Seagull Optimization Algorithm (SOA) and Extreme Learning Machine (ELM) classifier to classify and detect attacks in IoT networks. The CIC-IDS-2018 dataset is used in this work to evaluate the proposed model. The SOA is implemented for feature selection from the dataset, and the ELM is used to classify attacks from the selected features. The dataset has 80 features, in the proposed model used only 22 features with higher scores than the original dataset. The dataset is divided into 80% for training and 20% for testing. The proposed SOA-ELM model obtained 94.22% accuracy, 92.95% precision, 93.45% detection rate, and 91.26% f1-score.
Collapse
Affiliation(s)
- M. Reji
- Rohini College of Engineering and Technology, Kanyakumari, India
| | | | - P. Nancy
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - A. Lourdes Mary
- Rohini College of Engineering and Technology, Kanyakumari, India
| |
Collapse
|