Three-dimensional SVM with latent variable: application for detection of lung lesions in CT images.
J Med Syst 2014;
39:171. [PMID:
25472729 DOI:
10.1007/s10916-014-0171-5]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
The study aims to improve the performance of current computer-aided schemes for the detection of lung lesions, especially the low-contrast in gray density or irregular in shape. The relative position between suspected lesion and whole lung is, for the first time, added as a latent feature to enrich current Three-dimensional (3D) features such as shape, texture. Subsequently, 3D matrix patterns-based Support Vector Machine (SVM) with the latent variable, referred to as L-SVM3Dmatrix, was constructed accordingly. A CT image database containing 750 abnormal cases with 1050 lesions was used to train and evaluate several similar computer-aided detection (CAD) schemes: traditional features-based SVM (SVMfeature), 3D matrix patterns-based SVM (SVM3Dmatrix) and L-SVM3Dmatrix. The classifier performances were evaluated by computing the area under the ROC curve (AUC), using a 5-fold cross-validation. The L-SVM3Dmatrix sensitivity was 93.0 with 1.23% percentage of False Positive (FP), the SVM3Dmatrix sensitivity was 88.4 with 1.49% percentage of FP, and the SVMfeature sensitivity was 87.2 with 1.78% percentage of FP. The L-SVM3Dmatrix outperformed other current lung CAD schemes, especially regarding the difficult lesions.
Collapse