Tang Q, Sang N, Liu H. Learning Nonclassical Receptive Field Modulation for Contour Detection.
IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019;
29:1192-1203. [PMID:
31536000 DOI:
10.1109/tip.2019.2940690]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.
Collapse