1
|
Wang G, Fessler JA. Efficient Approximation of Jacobian Matrices Involving a Non-Uniform Fast Fourier Transform (NUFFT). IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2023; 9:43-54. [PMID: 37090025 PMCID: PMC10118239 DOI: 10.1109/tci.2023.3240081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is growing interest in learning Fourier domain sampling strategies (particularly for magnetic resonance imaging, MRI) using optimization approaches. For non-Cartesian sampling, the system models typically involve non-uniform fast Fourier transform (NUFFT) operations. Commonly used NUFFT algorithms contain frequency domain interpolation, which is not differentiable with respect to the sampling pattern, complicating the use of gradient methods. This paper describes an efficient and accurate approach for computing approximate gradients involving NUFFTs. Multiple numerical experiments validate the improved accuracy and efficiency of the proposed approximation. As an application to computational imaging, the NUFFT Jacobians were used to optimize non-Cartesian MRI sampling trajectories via data-driven stochastic optimization. Specifically, the sampling patterns were learned with respect to various model-based image reconstruction (MBIR) algorithms. The proposed approach enables sampling optimization for image sizes that are infeasible with standard auto-differentiation methods due to memory limits. The synergistic acquisition and reconstruction design leads to remarkably improved image quality. In fact, we show that model-based image reconstruction methods with suitably optimized imaging parameters can perform nearly as well as CNN-based methods.
Collapse
Affiliation(s)
- Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | | |
Collapse
|
2
|
Levy A, Poitevin F, Martel J, Nashed Y, Peck A, Miolane N, Ratner D, Dunne M, Wetzstein G. CryoAI: Amortized Inference of Poses for Ab Initio Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images. COMPUTER VISION - ECCV ... : ... EUROPEAN CONFERENCE ON COMPUTER VISION : PROCEEDINGS. EUROPEAN CONFERENCE ON COMPUTER VISION 2022; 13681:540-557. [PMID: 36745134 PMCID: PMC9897229 DOI: 10.1007/978-3-031-19803-8_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has become a tool of fundamental importance in structural biology, helping us understand the basic building blocks of life. The algorithmic challenge of cryo-EM is to jointly estimate the unknown 3D poses and the 3D electron scattering potential of a biomolecule from millions of extremely noisy 2D images. Existing reconstruction algorithms, however, cannot easily keep pace with the rapidly growing size of cryo-EM datasets due to their high computational and memory cost. We introduce cryoAI, an ab initio reconstruction algorithm for homogeneous conformations that uses direct gradient-based optimization of particle poses and the electron scattering potential from single-particle cryo-EM data. CryoAI combines a learned encoder that predicts the poses of each particle image with a physics-based decoder to aggregate each particle image into an implicit representation of the scattering potential volume. This volume is stored in the Fourier domain for computational efficiency and leverages a modern coordinate network architecture for memory efficiency. Combined with a symmetrized loss function, this framework achieves results of a quality on par with state-of-the-art cryo-EM solvers for both simulated and experimental data, one order of magnitude faster for large datasets and with significantly lower memory requirements than existing methods.
Collapse
Affiliation(s)
- Axel Levy
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford University, Department of Electrical Engineering, Stanford, CA, USA
| | | | - Julien Martel
- Stanford University, Department of Electrical Engineering, Stanford, CA, USA
| | - Youssef Nashed
- ML Initiative, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ariana Peck
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nina Miolane
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, CA, USA
| | - Daniel Ratner
- ML Initiative, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mike Dunne
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Gordon Wetzstein
- Stanford University, Department of Electrical Engineering, Stanford, CA, USA
| |
Collapse
|