1
|
Dura E, Domingo J, Ayala G, Martí-Bonmatí L. Evaluation of the registration of temporal series of contrast-enhanced perfusion magnetic resonance 3D images of the liver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:932-945. [PMID: 22704292 DOI: 10.1016/j.cmpb.2012.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 06/01/2023]
Abstract
The registration of 2D and 3D images is one of the key tasks in medical image processing and analysis. Accurate registration is a crucial preprocessing step for many tasks; consequently, the evaluation of its accuracy becomes necessary. Unfortunately, this is a difficult task, especially when no golden pattern (true result) is available and when the signal values may have changed between successive images to be registered. This is the case this paper deals with: we have a series of 3D images, magnetic resonance images (MRI) of the liver and adjacent areas that have to be registered. They have been taken while a contrast is diffused through the liver tissue, so intensity of each observed point changes for two reasons: contrast diffusion/perfusion and deformation of the liver (due to body movement and breathing). In this paper, we introduce a new method to automatically compare two or more registration algorithms applied to the same case of a perfusion magnetic resonance dynamic image so that the best of them can be chosen when no ground truth is available. This is done by modeling the function that gives the intensity at a given point as a functional datum, and using statistical techniques to assess its change in comparison with other functions. An example of the application is shown by comparing two parametrizations of a B-spline based registration algorithm. The main result of the proposed method is a suggestive evidence to guide the physician in the process of selecting a registration algorithm, that recommends the algorithm of minimal complexity but still suitable for the case to be analyzed.
Collapse
Affiliation(s)
- E Dura
- Department of Informatics, University of Valencia, Avda. de la Universidad, s/n 46100-Burjasot, Valencia, Spain.
| | | | | | | |
Collapse
|
2
|
Nazarov AA, Risse J, Ang WH, Schmitt F, Zava O, Ruggi A, Groessl M, Scopelitti R, Juillerat-Jeanneret L, Hartinger CG, Dyson PJ. Anthracene-Tethered Ruthenium(II) Arene Complexes as Tools To Visualize the Cellular Localization of Putative Organometallic Anticancer Compounds. Inorg Chem 2012; 51:3633-9. [DOI: 10.1021/ic202530j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexey A. Nazarov
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Julie Risse
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore
117543, Singapore
| | - Frederic Schmitt
- University Institute of Pathology Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Olivier Zava
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Albert Ruggi
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Michael Groessl
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelitti
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | | | | | - Paul J. Dyson
- Institute
of Chemical Sciences
and Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Abstract
BACKGROUND Drug-eluting polymer implants present a compelling parenteral route of administration for cancer chemotherapy. With potential for minimally invasive, image-guided placement and highly localized drug release, these delivery systems are playing an increasingly important role in cancer management. This is particularly true as the use of labile proteins and other bioactive molecules is likely to increase in the upcoming years. OBJECTIVE In this review, we present the current trends in the application of Pre-formed and in situ-forming systems as drug-eluting implants for cancer chemotherapy. METHODS We outline the clinically available options as well as up-and-coming technologies and their advantages and challenges. We also describe ongoing related innovations with image-guided drug delivery, mathematical modeling of implanted delivery systems and implanted drug delivery in combination with other therapies. RESULTS/CONCLUSION Whether used alone or combined with other minimally invasive procedures, drug-eluting polymeric implants will play a significant role in the future of cancer management.
Collapse
Affiliation(s)
- Agata A Exner
- Case Western Reserve University, Department of Radiology, 11100 Euclid Avenue, Cleveland, OH 44106-5056, USA.
| | | |
Collapse
|
4
|
Breen MS, Lancaster TL, Wilson DL. Correcting spatial distortion in histological images. Comput Med Imaging Graph 2005; 29:405-17. [PMID: 16006097 DOI: 10.1016/j.compmedimag.2005.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/11/2005] [Indexed: 11/23/2022]
Abstract
We described an interactive method for correcting spatial distortion in histology samples, applied them to a large set of image data, and quantitatively evaluated the quality of the corrections. We demonstrated registration of histology samples to photographs of macroscopic tissue samples and to MR images. We first described methods for obtaining corresponding fiducial and anatomical points, including a new technique for determining boundary correspondence points. We then describe experimental methods for tissue preparation, including a technique for adding color-coded internal and boundary ink marks that are used to validate the method by measuring the registration error. We applied four different transformations with internal and boundary correspondence points, and measured the distance error between other internal ink fiducials. A large number of boundary points, typically 20-30, and at least two internal points were required for accurate warping registration. Interior errors with the transformation methods were ordered: thin plate spline (TPS) approximately non-warping<<triangle warping<polynomial warping. Although non-warping surprisingly gave the lowest interior distance error (0.5+/-0.3mm), TPS was more robust, gave an insignificantly greater error (0.6+/-0.3mm) and much better results near boundaries where distortion was more evident, and allowed us to correct torn histology samples, a common problem. Using the method to evaluate RF thermal ablation, we found good zonal correlation between MR images and corrected histology samples. The method can be practically applied to this and other emerging applications such as in vivo molecular imaging.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
5
|
Breen MS, Lazebnik RS, Wilson DL. Three-Dimensional Registration of Magnetic Resonance Image Data to Histological Sections with Model-Based Evaluation. Ann Biomed Eng 2005; 33:1100-12. [PMID: 16133918 DOI: 10.1007/s10439-005-5778-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
We developed a three-dimensional (3D) registration method to align medical scanner data with histological sections. After acquiring 3D medical scanner images, we sliced and photographed the tissue using, a custom apparatus, to obtain a volume of tissue section images. Histological samples from the sections were digitized using a video microscopy system. We aligned the histology and medical images to the reference tissue images using our 3D registration method. We applied the method to correlate in vivo magnetic resonance (MR) and histological measurements for radio-frequency thermal ablation lesions in rabbit thighs. For registration evaluation, we used an ellipsoid model to describe the lesion surfaces. The model surface closely fit the inner (M1) and outer (M2) boundaries of the hyperintense region in MR lesion images, and the boundary of necrosis (H1) in registered histology images. We used the distance between the model surfaces to indicate the 3D registration error. For four experiments, we measured a registration accuracy of 0.96+/- 0.13 mm (mean+/-SD) from the absolute distance between the M2 and H1 model surfaces, which compares favorably to the 0.70 mm in-plane MR voxel dimension. This suggests that our registration method provides sufficient spatial correspondence to correlate 3D medical scanner and histology data.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
6
|
Exner AA, Weinberg BD, Stowe NT, Gallacher A, Wilson DL, Haaga JR, Gao J. Quantitative computed tomography analysis of local chemotherapy in liver tissue after radiofrequency ablation. Acad Radiol 2004; 11:1326-36. [PMID: 15596370 DOI: 10.1016/j.acra.2004.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/24/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES Computed tomography (CT) was used to noninvasively monitor local drug pharmacokinetics from polymer implants in rat livers before and following radiofrequency ablation. MATERIALS AND METHODS Polymer matrixes containing carboplatin (a platinum-containing chemotherapeutic agent) were implanted into rat livers either immediately after radiofrequency ablation (n = 15) or without prior treatment (n = 15). The animals were divided into five subgroups (n = 3 per group) and subjected to a terminal CT scan at 6, 24, 48, 96, or 144 hours. Carboplatin concentration in tissue and within the implant matrix was correlated with CT intensity, and standard curves were produced for each environment. This correlation was used to evaluate the differences in drug transport properties between normal and ablated rat livers. A quantitative image analysis method was developed and used to evaluate the release rate and tissue distribution of carboplatin in normal and ablated liver tissue. The CT data were validated by previously reported atomic absorption spectroscopy measurement of implant and tissue drug levels. RESULTS Correlation of carboplatin concentration and Hounsfield units results in a linear relationship with correlation coefficients (slopes) of 15 and 4 Hounsfield units/(mg/mL), for carboplatin in tissue and polymer, respectively. Noninvasive monitoring of local pharmacokinetics in normal and ablated tissues indicates that ablation before local carboplatin delivery increases the retention of carboplatin within the polymer matrix and drastically increases the drug retention in the ablated tissue volume (over 3-fold difference) resulting in a higher average dose to the surrounding tissue. At 1.6 mm from the implant boundary, carboplatin concentration is significantly higher in ablated tissue at 48, 96, and 144 hours (P <.05), and reaches 4.7 mg/mL in ablated tissue at 48 hours. In comparison, the concentration in normal liver at 1.6 mm reaches only 0.7 mg/mL at the same time point. The drug penetrates 3.1 mm in ablated liver compared with 2.3 mm in normal liver also at 48 hours. After 144 hours, the drug is still detected at 3.1 mm in ablated liver but not in normal liver. The differences are significant (P <.05) at both 48 and 144 hours. Correlation with chemical analysis suggests that CT data accurately predicts the drug pharmacokinetics in both ablated and normal livers. CONCLUSION This work shows that X-ray CT imaging is a useful and promising technique for in vivo monitoring of the release kinetics of locally delivered radiopaque agents.
Collapse
Affiliation(s)
- Agata A Exner
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Breen MS, Lancaster TL, Lazebnik RS, Nour SG, Lewin JS, Wilson DL. Three-dimensional method for comparing in vivo interventional MR images of thermally ablated tissue with tissue response. J Magn Reson Imaging 2003; 18:90-102. [PMID: 12815644 DOI: 10.1002/jmri.10324] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate the ability of magnetic resonance (MR) to monitor radio-frequency (RF) ablation treatments by comparing MR images of thermal lesions to histologically assayed cellular damage. We developed a new methodology using three-dimensional registration for making spatial correlations. MATERIALS AND METHODS A low-field, open MRI system was used to guide an ablation probe into rabbit thigh muscle and acquire MR volumes after ablation. After fixation, we sliced and photographed the tissue at 3-mm intervals, using a specially designed apparatus, to obtain a volume of tissue images. Histologic samples were digitized using a video microscopy system. For our three-dimensional registration method, we used the tissue images as the reference, and registered histology and MR images to them using two different computer alignment steps. First, the MR volume was aligned to the volume of tissue images by registering needle fiducials placed near the tissue of interest. Second, we registered the histology images with the tissue images using a two-dimensional warping technique that aligned internal features and the outside boundary of histology and tissue images. RESULTS The MR and histology images were very well aligned, and registration accuracy, determined from displacement of needle fiducials, was 1.32 +/- 0.39 mm (mean +/- SD), which compared favorably to the MR voxel dimensions (0.70 mm in-plane and 3.0 mm thick). A preliminary comparison of MR and tissue response showed that the region inside the elliptical hyperintense rim in MR closely corresponds to the region of necrosis as established by histology, with a mean absolute distance between MR and histology boundaries of 1.17 mm, slightly smaller than the mean registration error. The MR region slightly overestimated the region of necrosis, with a mean signed distance between boundaries of 0.85 mm. CONCLUSION Our results suggest that our methodology can be used to achieve three-dimensional registration of histology and in vivo MR images. In MR lesion images, the inner border of the hyperintense region corresponds to the border of irreversible cell damage. This is good evidence that during RF ablation treatments, iMRI lesion images can be used for real-time feedback.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lazebnik RS, Lancaster TL, Breen MS, Lewin JS, Wilson DL. Volume registration using needle paths and point landmarks for evaluation of interventional MRI treatments. IEEE TRANSACTIONS ON MEDICAL IMAGING 2003; 22:653-660. [PMID: 12846434 DOI: 10.1109/tmi.2003.812246] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We created a method for three-dimensional (3-D) registration of medical images (e.g., magnetic resonance imaging (MRI) or computed tomography) to images of physical tissue sections or to other medical images and evaluated its accuracy. Our method proved valuable for evaluation of animal model experiments on interventional-MRI guided thermal ablation and on a new localized drug delivery system. The method computes an optimum set of rigid body registration parameters by minimization of the Euclidean distances between automatically chosen correspondence points, along manually selected fiducial needle paths, and optional point landmarks, using the iterative closest point algorithm. For numerically simulated experiments, using two needle paths over a range of needle orientations, mean voxel displacement errors depended mostly on needle localization error when the angle between needles was at least 20 degrees. For parameters typical of our in vivo experiments, the mean voxel displacement error was < 0.35 mm. In addition, we determined that the distance objective function was a useful diagnostic for predicting registration quality. To evaluate the registration quality of physical specimens, we computed the misregistration for a needle not considered during the optimization procedure. We registered an ex vivo sheep brain MR volume with another MR volume and tissue section photographs, using various combinations of needle and point landmarks. Mean registration error was always < or = 0.54 mm for MR-to-MR registrations and < or = 0.52 mm for MR to tissue section registrations. We also applied the method to correlate MR volumes of radio-frequency induced thermal ablation lesions with actual tissue destruction. In this case, in vivo rabbit thigh volumes were registered to photographs of ex vivo tissue sections using two needle paths. Mean registration errors were between 0.7 and 1.36 mm over all rabbits, the largest error less than two MR voxel widths. We conclude that our method provides sufficient spatial correspondence to facilitate comparison of 3-D image data with data from gross pathology tissue sections and histology.
Collapse
Affiliation(s)
- Roee S Lazebnik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207 USA
| | | | | | | | | |
Collapse
|
9
|
Szymanski-Exner A, Stowe NT, Salem K, Lazebnik R, Haaga JR, Wilson DL, Gao J. Noninvasive monitoring of local drug release using X-ray computed tomography: optimization and in vitro/in vivo validation. J Pharm Sci 2003; 92:289-96. [PMID: 12532379 DOI: 10.1002/jps.10295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo release profiles of drug-loaded biodegradable implants were noninvasively monitored and characterized using X-ray computed tomography (CT). The imaging method was adapted and optimized to quantitatively examine the release of an active agent from a model cylindrical PLGA device (the millirod) into rabbit livers over 48 h. Iohexol, a CT contrast agent, served as a model drug; optimization of CT acquisition parameters yielded a sensitivity of 0.21 mg/mL (or 95 microg iodine/mL) for this agent. In vitro validation of the method was carried out by tracking release of iohexol in gelatin gel phantoms. In vivo release in rabbit livers was characterized through quantitative analysis of CT images and compared with UV-Vis analysis of the explanted devices at three implantation times. After correction for respiratory motion, CT analysis correlates well with the extracted iohexol data at all time points. The percent error between the actual and experimental image data was below 10%. This study demonstrates the potential of using computed tomography to noninvasively quantify the rate of agent release from controlled delivery devices in vivo.
Collapse
Affiliation(s)
- Agata Szymanski-Exner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Szymanski-Exner A, Stowe NT, Lazebnik RS, Salem K, Wilson DL, Haaga JR, Gao J. Noninvasive monitoring of local drug release in a rabbit radiofrequency (RF) ablation model using X-ray computed tomography. J Control Release 2002; 83:415-25. [PMID: 12387949 DOI: 10.1016/s0168-3659(02)00216-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, X-ray computed tomography (CT) was utilized as a noninvasive method to directly examine local drug release kinetics in livers before and following radiofrequency thermal ablation. Iohexol, a CT contrast agent, was used as a drug-mimicking molecule. Release of iohexol in healthy and ablated rabbit livers over 48 h was quantified and correlated with the release profiles from phosphate-buffered saline (PBS) in vitro. The results show that iohexol release in ablated livers is significantly slower than both release in normal livers and in vitro. The time at which 50% of the drug was released (t(1/2)) into ablated liver (20.6+/-5.9 h) was 1.7 times longer than in normal liver (12.1+/-5.4 h) and approximately two times longer than that in PBS (10.1+/-1.2 h). The slower release in ablated livers is a result of severe tissue damage inflicted by thermal ablation, as supported by histological examination. This data suggests that a noninvasive imaging method provides a superior measurement over in vitro release studies in accurately quantifying the local release kinetics of an agent in an altered physiological system in vivo. Because the development of a successful local drug therapy is dependent on the understanding of the agent release kinetics at the implantation site, the noninvasive data may be indispensable in effectively predicting the implant behavior in a physiological system.
Collapse
Affiliation(s)
- Agata Szymanski-Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sonka M, Grunkin M. Image processing and analysis in drug discovery and clinical trials. IEEE TRANSACTIONS ON MEDICAL IMAGING 2002; 21:1209-1211. [PMID: 12585702 DOI: 10.1109/tmi.2002.806272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|