1
|
Huang X, Bajaj R, Li Y, Ye X, Lin J, Pugliese F, Ramasamy A, Gu Y, Wang Y, Torii R, Dijkstra J, Zhou H, Bourantas CV, Zhang Q. POST-IVUS: A perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation. Med Image Anal 2023; 89:102922. [PMID: 37598605 DOI: 10.1016/j.media.2023.102922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Intravascular ultrasound (IVUS) is recommended in guiding coronary intervention. The segmentation of coronary lumen and external elastic membrane (EEM) borders in IVUS images is a key step, but the manual process is time-consuming and error-prone, and suffers from inter-observer variability. In this paper, we propose a novel perceptual organisation-aware selective transformer framework that can achieve accurate and robust segmentation of the vessel walls in IVUS images. In this framework, temporal context-based feature encoders extract efficient motion features of vessels. Then, a perceptual organisation-aware selective transformer module is proposed to extract accurate boundary information, supervised by a dedicated boundary loss. The obtained EEM and lumen segmentation results will be fused in a temporal constraining and fusion module, to determine the most likely correct boundaries with robustness to morphology. Our proposed methods are extensively evaluated in non-selected IVUS sequences, including normal, bifurcated, and calcified vessels with shadow artifacts. The results show that the proposed methods outperform the state-of-the-art, with a Jaccard measure of 0.92 for lumen and 0.94 for EEM on the IVUS 2011 open challenge dataset. This work has been integrated into a software QCU-CMS2 to automatically segment IVUS images in a user-friendly environment.
Collapse
Affiliation(s)
- Xingru Huang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK; School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou, Zhejiang, China
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yilong Li
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK
| | - Xin Ye
- Zhejiang Provincial People's Hospital, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Ji Lin
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK
| | - Francesca Pugliese
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yue Gu
- Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou, China
| | - Yaqi Wang
- College of Media Engineering, Communication University of Zhejiang, Hangzhou, China
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | | | - Huiyu Zhou
- School of Informatics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Qianni Zhang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E3 4BL, UK.
| |
Collapse
|
2
|
Tong J, Li K, Lin W, Shudong X, Anwar A, Jiang L. Automatic lumen border detection in IVUS images using dictionary learning and kernel sparse representation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Li K, Tong J, Zhu X, Xia S. Automatic Lumen Border Detection in IVUS Images Using Deep Learning Model and Handcrafted Features. ULTRASONIC IMAGING 2021; 43:59-73. [PMID: 33448256 DOI: 10.1177/0161734620987288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the clinical analysis of Intravascular ultrasound (IVUS) images, the lumen size is an important indicator of coronary atherosclerosis, and is also the premise of coronary artery disease diagnosis and interventional treatment. In this study, a fully automatic method based on deep learning model and handcrafted features is presented for the detection of the lumen borders in IVUS images. First, 193 handcrafted features are extracted from the IVUS images. Then hybrid feature vectors are constructed by combining handcrafted features with 64 high-level features extracted from U-Net. In order to obtain the feature subsets with larger contribution, we employ the extended binary cuckoo search for feature selection. Finally, the selected 36-dimensional hybrid feature subset is used to classify the test images using dictionary learning based on kernel sparse coding. The proposed algorithm is tested on the publicly available dataset and evaluated using three indicators. Through ablation experiments, mean value of the experimental results (Jaccard: 0.88, Hausdorff distance: 0.36, Percentage of the area difference: 0.06) prove to be effective improving lumen border detection. Furthermore, compared with the recent methods used on the same dataset, the proposed method shows good performance and high accuracy.
Collapse
Affiliation(s)
- Kai Li
- Zhejiang Sci-Tech University, Hangzhou, China
| | - Jijun Tong
- Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinjian Zhu
- Zhejiang University School of Medicine, Yiwu, China
| | - Shudong Xia
- Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
4
|
Lo Vercio L, Del Fresno M, Larrabide I. Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 177:113-121. [PMID: 31319939 DOI: 10.1016/j.cmpb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides axial grey-scale images of blood vessels. The large number of images require automatic analysis, specifically to identify the lumen and outer vessel wall. However, the high amount of noise, the presence of artifacts and anatomical structures, such as bifurcations, calcifications and fibrotic plaques, usually hinder the proper automatic segmentation of the vessel wall. METHODS Lumen, media, adventitia and surrounding tissues are automatically detected using Support Vector Machines (SVMs). The classification performance of the SVMs vary according to the kind of structure present within each region of the image. Random Forest (RF) is used to detect different morphological structures and to modify the initial layer classification depending on the detected structure. The resulting classification maps are fed into a segmentation method based on deformable contours to detect lumen-intima (LI) and media-adventitia (MA) interfaces. RESULTS The modifications in the layer classifications according to the presence of structures proved to be effective improving LI and MA segmentations. The proposed method reaches a Jaccard Measure (JM) of 0.88 ± 0.08 for LI segmentation, compared with 0.88 ± 0.05 of a semiautomatic method. When looking at MA, our method reaches a JM of 0.84 ± 0.09, and outperforms previous automatic methods in terms of HD, with 0.51mm ± 0.30. CONCLUSIONS A simple modification to the arterial layer classification produces results that match and improve state-of-the-art fully-automatic segmentation methods for LI and MA in 20MHz IVUS images. For LI segmentation, the proposed automatic method performs accurately as semi-automatic methods. For MA segmentation, our method matched the quality of state-of-the-art automatic methods described in the literature. Furthermore, our implementation is modular and open-source, allowing for future extensions and improvements.
Collapse
Affiliation(s)
- Lucas Lo Vercio
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Mariana Del Fresno
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia deBuenos Aires (CICPBA), Argentina
| | - Ignacio Larrabide
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
5
|
Kermani A, Ayatollahi A. A new nonparametric statistical approach to detect lumen and Media-Adventitia borders in intravascular ultrasound frames. Comput Biol Med 2018; 104:10-28. [PMID: 30419417 DOI: 10.1016/j.compbiomed.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022]
Abstract
Intravascular ultrasound (IVUS) imaging is widely known as a powerful interventional imaging modality for diagnosing atherosclerosis, and for treatment planning. In this regard, the detection of lumen and media-adventitia (MA) borders is considered to be a vital process. However, the manual detection of these two borders by the physician is cumbersome due to the large number of frames in a sequence. In addition, no approved universal automatic method has been presented so far due to the great diversity in the appearance of the coronary artery in the images acquired by different IVUS systems. To this end, the present study aimed to provide a new border search theory on the radial profile, based upon the nonparametric statistical approach, and to develop a generic and fully automatic three-step process for extracting the lumen and MA borders in IVUS frames based on the proposed theory. Thereafter, the proposed theory and three-step process were evaluated on synthetic images, as well as on a test set of standard publicly available images, respectively. The results showed that our three-step process could segment the borders with ≥0.82 and with ≥0.75 Jaccard measure (JM) to manual borders in IVUS frames acquired by the 20 MHz and 40 MHz probes, respectively. Based on the results, the lumen and MA borders can be extracted automatically, and the border extraction process can be implemented in parallel for a polar image due to the capability of the present proposed method to estimate the borders for each angle independently.
Collapse
Affiliation(s)
- Ali Kermani
- School of Electrical Engineering, Iran University of Science and Technology, Iran
| | - Ahmad Ayatollahi
- School of Electrical Engineering, Iran University of Science and Technology, Iran.
| |
Collapse
|
6
|
Su S, Hu Z, Lin Q, Hau WK, Gao Z, Zhang H. An artificial neural network method for lumen and media-adventitia border detection in IVUS. Comput Med Imaging Graph 2017; 57:29-39. [DOI: 10.1016/j.compmedimag.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
7
|
Lo Vercio L, Orlando JI, Del Fresno M, Larrabide I. Assessment of image features for vessel wall segmentation in intravascular ultrasound images. Int J Comput Assist Radiol Surg 2016; 11:1397-407. [PMID: 26811082 DOI: 10.1007/s11548-015-1345-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides axial greyscale images, allowing the assessment of the vessel wall and the surrounding tissues. Several studies have described automatic segmentation of the luminal boundary and the media-adventitia interface by means of different image features. PURPOSE The aim of the present study is to evaluate the capability of some of the most relevant state-of-the-art image features for segmenting IVUS images. The study is focused on Volcano 20 MHz frames not containing plaque or containing fibrotic plaques, and, in principle, it could not be applied to frames containing shadows, calcified plaques, bifurcations and side vessels. METHODS Several image filters, textural descriptors, edge detectors, noise and spatial measures were taken into account. The assessment is based on classification techniques previously used for IVUS segmentation, assigning to each pixel a continuous likelihood value obtained using support vector machines (SVMs). To retrieve relevant features, sequential feature selection was performed guided by the area under the precision-recall curve (AUC-PR). RESULTS Subsets of relevant image features for lumen, plaque and surrounding tissues characterization were obtained, and SVMs trained with these features were able to accurately identify those regions. The experimental results were evaluated with respect to ground truth segmentations from a publicly available dataset, reaching values of AUC-PR up to 0.97 and Jaccard index close to 0.85. CONCLUSION Noise-reduction filters and Haralick's textural features denoted their relevance to identify lumen and background. Laws' textural features, local binary patterns, Gabor filters and edge detectors had less relevance in the selection process.
Collapse
Affiliation(s)
- Lucas Lo Vercio
- Pladema, UNICEN, Tandil, Argentina.
- CONICET, Tandil, Argentina.
| | | | | | | |
Collapse
|
8
|
Gao Z, Hau WK, Lu M, Huang W, Zhang H, Wu W, Liu X, Zhang YT. Automated Framework for Detecting Lumen and Media-Adventitia Borders in Intravascular Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2001-2021. [PMID: 25922134 DOI: 10.1016/j.ultrasmedbio.2015.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
An automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images was developed on the basis of an adaptive region-growing method and an unsupervised clustering method. To demonstrate the capability of the framework, linear regression, Bland-Altman analysis and distance analysis were used to quantitatively investigate the correlation, agreement and spatial distance, respectively, between our detected borders and manually traced borders in 337 intravascular ultrasound images in vivo acquired from six patients. The results of these investigations revealed good correlation (r = 0.99), good agreement (>96.82% of results within the 95% confidence interval) and small average distance errors (lumen border: 0.08 mm, media-adventitia border: 0.10 mm) between the borders generated by the automated framework and the manual tracing method. The proposed framework was found to be effective in detecting lumen and media-adventitia borders in intravascular ultrasound images, indicating its potential for use in routine studies of vascular disease.
Collapse
Affiliation(s)
- Zhifan Gao
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - William Kongto Hau
- Institute of Cardiovascular Medicine and Research, LiKaShing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Minhua Lu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, Southern Medical University, Guangzhou, China
| | - Heye Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China.
| | - Wanqing Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China
| | - Yuan-Ting Zhang
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen, China; The Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Zhao F, Xie X, Roach M. Computer Vision Techniques for Transcatheter Intervention. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2015; 3:1900331. [PMID: 27170893 PMCID: PMC4848047 DOI: 10.1109/jtehm.2015.2446988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022]
Abstract
Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and the treatment of cardiovascular diseases. For example, transcatheter aortic valve implantation is an alternative to aortic valve replacement for the treatment of severe aortic stenosis, and transcatheter atrial fibrillation ablation is widely used for the treatment and the cure of atrial fibrillation. In addition, catheter-based intravascular ultrasound and optical coherence tomography imaging of coronary arteries provides important information about the coronary lumen, wall, and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial to the evaluation and the treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation and motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods. We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence, it is important to understand the application domain, clinical background, and imaging modality, so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on the background information of the transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Xianghua Xie
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Matthew Roach
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| |
Collapse
|
10
|
Coronary Plaque Boundary Enhancement in IVUS Image by Using a Modified Perona-Malik Diffusion Filter. Int J Biomed Imaging 2014; 2014:740627. [PMID: 25506357 PMCID: PMC4259135 DOI: 10.1155/2014/740627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022] Open
Abstract
We propose a modified Perona-Malik diffusion (PMD) filter to enhance a coronary plaque boundary by considering the conditions peculiar to an intravascular ultrasound (IVUS) image. The IVUS image is commonly used for a diagnosis of acute coronary syndrome (ACS). The IVUS image is however very grainy due to heavy speckle noise. When the normal PMD filter is applied for speckle noise reduction in the IVUS image, the coronary plaque boundary becomes vague. For this problem, we propose a modified PMD filter which is designed in special reference to the coronary plaque boundary detection. It can then not only reduce the speckle noise but also enhance clearly the coronary plaque boundary. After applying the modified PMD filter to the IVUS image, the coronary plaque boundaries are successfully detected further by applying the Takagi-Sugeno fuzzy model. The accuracy of the proposed method has been confirmed numerically by the experiments.
Collapse
|
11
|
Segmentation method of intravascular ultrasound images of human coronary arteries. Comput Med Imaging Graph 2014; 38:91-103. [DOI: 10.1016/j.compmedimag.2013.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022]
|
12
|
Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. Comput Med Imaging Graph 2013; 38:70-90. [PMID: 24012215 DOI: 10.1016/j.compmedimag.2013.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022]
Abstract
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Collapse
|
13
|
Automatic lumen segmentation in IVOCT images using binary morphological reconstruction. Biomed Eng Online 2013; 12:78. [PMID: 23937790 PMCID: PMC3751056 DOI: 10.1186/1475-925x-12-78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/08/2013] [Indexed: 11/25/2022] Open
Abstract
Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation.
Collapse
|
14
|
Cardoso FM, Moraes MC, Furuie SS. Realistic IVUS image generation in different intraluminal pressures. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2104-2119. [PMID: 23062368 DOI: 10.1016/j.ultrasmedbio.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/01/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
Intravascular ultrasound (IVUS) phantoms are important to calibrate and evaluate many IVUS imaging processing tasks. However, phantom generation is never the primary focus of related works; hence, it cannot be well covered, and is usually based on more than one platform, which may not be accessible to investigators. Therefore, we present a framework for creating representative IVUS phantoms, for different intraluminal pressures, based on the finite element method and Field II. First, a coronary cross-section model is selected. Second, the coronary regions are identified to apply the properties. Third, the corresponding mesh is generated. Fourth, the intraluminal force is applied and the deformation computed. Finally, the speckle noise is incorporated. The framework was tested taking into account IVUS contrast, noise and strains. The outcomes are in line with related studies and expected values. Moreover, the framework toolbox is freely accessible and fully implemented in a single platform.
Collapse
Affiliation(s)
- Fernando Mitsuyama Cardoso
- Biomedical Engineering Laboratory, Department of Telecommunication and Control Engineering, School of Engineering, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | |
Collapse
|
15
|
Ciompi F, Pujol O, Gatta C, Alberti M, Balocco S, Carrillo X, Mauri-Ferre J, Radeva P. HoliMAb: A holistic approach for Media–Adventitia border detection in intravascular ultrasound. Med Image Anal 2012; 16:1085-100. [DOI: 10.1016/j.media.2012.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
16
|
Combination of the Level-Set Methods with the Contourlet Transform for the Segmentation of the IVUS Images. Int J Biomed Imaging 2012; 2012:439597. [PMID: 22675334 PMCID: PMC3364570 DOI: 10.1155/2012/439597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 11/23/2022] Open
Abstract
Intravascular ultrasound (IVUS) imaging is a catheter-based medical methodology establishing itself as a useful modality for studying atherosclerosis. The detection of lumen and media-adventitia boundaries in IVUS images constitutes an essential step towards the reliable quantitative diagnosis of atherosclerosis. In this paper, a novel scheme is proposed to automatically detect lumen and media-adventitia borders. This segmentation method is based on the level-set model and the contourlet multiresolution analysis. The contourlet transform decomposes the original image into low-pass components and band-pass directional bands. The circular hough transform (CHT) is adopted in low-pass bands to yield the initial lumen and media-adventitia contours. The anisotropic diffusion filtering is then used in band-pass subbands to suppress noise and preserve arterial edges. Finally, the curve evolution in the level-set functions is used to obtain final contours. The proposed method is experimentally evaluated via 20 simulated images and 30 real images from human coronary arteries. It is demonstrated that the mean distance error and the relative mean distance error have increased by 5.30 pixels and 7.45%, respectively, as compared with those of a recently traditional level-set model. These results reveal that the proposed method can automatically and accurately extract two vascular boundaries.
Collapse
|
17
|
Katouzian A, Angelini ED, Carlier SG, Suri JS, Navab N, Laine AF. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. ACTA ACUST UNITED AC 2012; 16:823-34. [PMID: 22389156 DOI: 10.1109/titb.2012.2189408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.
Collapse
|
18
|
Moraes MC, Furuie SS. Automatic coronary wall segmentation in intravascular ultrasound images using binary morphological reconstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1486-1499. [PMID: 21741157 DOI: 10.1016/j.ultrasmedbio.2011.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 05/31/2023]
Abstract
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging.
Collapse
Affiliation(s)
- Matheus Cardoso Moraes
- Department of Telecommunication and Control, Engineering School, University of São Paulo, São Paulo SP, Brazil.
| | | |
Collapse
|
19
|
Zhang Q, Wang Y, Ma J, Shi J. Contour detection of atherosclerotic plaques in IVUS images using ellipse template matching and particle swarm optimization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:5174-5177. [PMID: 22255504 DOI: 10.1109/iembs.2011.6091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It is valuable for diagnosis of atherosclerosis to detect lumen and media-adventitia contours in intravascular ultrasound (IVUS) images of atherosclerotic plaques. In this paper, a method for contour detection of plaques is proposed utilizing the prior knowledge of elliptic geometry of plaques. Contours are initialized as ellipses by using ellipse template matching, where a matching function is maximized by particle swarm optimization. Then the contours are refined by boundary vector field snakes. The method was evaluated via 88 in vivo images from 21 patients. It outperformed a state-of-the-art method by 3.8 pixels and 4.8% in terms of the mean distance error and relative mean distance error, respectively.
Collapse
Affiliation(s)
- Qi Zhang
- School of Communication and Information Engineering, Shanghai University, China.
| | | | | | | |
Collapse
|
20
|
Zhang Q, Wang Y, Wang W, Ma J, Qian J, Ge J. Automatic segmentation of calcifications in intravascular ultrasound images using snakes and the contourlet transform. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:111-129. [PMID: 19900745 DOI: 10.1016/j.ultrasmedbio.2009.06.1097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/17/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
It is valuable to detect calcifications in intravascular ultrasound images for studies of coronary artery diseases. An image segmentation method based on snakes and the Contourlet transform is proposed to automatically and accurately detect calcifications. With the Contourlet transform, an original image is decomposed into low-pass bands and band-pass directional sub-bands. The 2-D Renyi's entropy is used to adaptively threshold the low-pass bands in a multiresolution hierarchy to determine regions-of-interest (ROIs). Then a mean intensity ratio, reflecting acoustic shadowing, is presented to classify calcifications from noncalcifications and obtain initial contours of calcifications. The anisotropic diffusion is used in bandpass directional sub-bands to suppress noise and preserve calcific edges. Finally, the contour deformation in the boundary vector field is used to obtain final contours of calcifications. The method was evaluated via 60 simulated images and 86 in vivo images. It outperformed a recently proposed method, the Santos Filho method, by 2.76% and 14.53%, in terms of the sensitivity and specificity of calcification detection, respectively. The area under the receiver operating characteristic curve increased by 0.041. The relative mean distance error, relative difference degree, relative arc difference, relative thickness difference and relative length difference were reduced by 5.73%, 19.79%, 11.62%, 12.06% and 20.51%, respectively. These results reveal that the proposed method can automatically and accurately detect calcifications and delineate their boundaries. (E-mail: yywang@fudan.edu.cn).
Collapse
Affiliation(s)
- Qi Zhang
- Department of Electronic Engineering, Fudan University, 200032, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
21
|
Hernandez-Sabate A, Gil D, Fernandez-Nofrerias E, Radeva P, Marti E. Approaching artery rigid dynamics in IVUS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1670-1680. [PMID: 19369152 DOI: 10.1109/tmi.2009.2017927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.
Collapse
Affiliation(s)
- Aura Hernandez-Sabate
- Computer Science Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
22
|
Dimitrova M, Roumenin C, Nikolov D, Rotger D, Radeva P. Multimodal Data Fusion for Intelligent Cardiovascular Diagnosis and Treatment in the Active Vessel Medical Workstation. JOURNAL OF INTELLIGENT SYSTEMS 2009. [DOI: 10.1515/jisys.2009.18.1-2.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Papadogiorgaki M, Mezaris V, Chatzizisis YS, Giannoglou GD, Kompatsiaris I. Image analysis techniques for automated IVUS contour detection. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1482-1498. [PMID: 18439746 DOI: 10.1016/j.ultrasmedbio.2008.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/21/2007] [Accepted: 01/31/2008] [Indexed: 05/26/2023]
Abstract
Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the detection of lumen and media-adventitia borders in IVUS images is presented. This comprises two different steps for contour initialization: one for each corresponding contour of interest and a procedure for the refinement of the detected contours. Intensity information, as well as the result of texture analysis, generated by means of a multilevel discrete wavelet frames decomposition, are used in two different techniques for contour initialization. For subsequently producing smooth contours, three techniques based on low-pass filtering and radial basis functions are introduced. The different combinations of the proposed methods are experimentally evaluated in large datasets of IVUS images derived from human coronary arteries. It is demonstrated that our proposed segmentation approaches can quickly and reliably perform automated segmentation of IVUS images.
Collapse
Affiliation(s)
- Maria Papadogiorgaki
- Informatics and Telematics Institute (ITI)/ Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
24
|
Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int J Comput Assist Radiol Surg 2008. [DOI: 10.1007/s11548-008-0235-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Unal G, Slabaugh G, Kakadiaris IA, Tannenbaum A. Introduction to the special section on computer vision for intravascular and intracardiac imaging. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2008; 12:273-6. [PMID: 18693494 PMCID: PMC3646520 DOI: 10.1109/titb.2008.920458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
26
|
Loizou CP, Pattichis CS, Pantziaris M, Nicolaides A. An Integrated System for the Segmentation of Atherosclerotic Carotid Plaque. ACTA ACUST UNITED AC 2007; 11:661-7. [DOI: 10.1109/titb.2006.890019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|