1
|
Zhang J, Mao H, Chang D, Yu H, Wu W, Shen D. Adaptive and Iterative Learning With Multi-Perspective Regularizations for Metal Artifact Reduction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3354-3365. [PMID: 38687653 DOI: 10.1109/tmi.2024.3395348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Metal artifact reduction (MAR) is important for clinical diagnosis with CT images. The existing state-of-the-art deep learning methods usually suppress metal artifacts in sinogram or image domains or both. However, their performance is limited by the inherent characteristics of the two domains, i.e., the errors introduced by local manipulations in the sinogram domain would propagate throughout the whole image during backprojection and lead to serious secondary artifacts, while it is difficult to distinguish artifacts from actual image features in the image domain. To alleviate these limitations, this study analyzes the desirable properties of wavelet transform in-depth and proposes to perform MAR in the wavelet domain. First, wavelet transform yields components that possess spatial correspondence with the image, thereby preventing the spread of local errors to avoid secondary artifacts. Second, using wavelet transform could facilitate identification of artifacts from image since metal artifacts are mainly high-frequency signals. Taking these advantages of the wavelet transform, this paper decomposes an image into multiple wavelet components and introduces multi-perspective regularizations into the proposed MAR model. To improve the transparency and validity of the model, all the modules in the proposed MAR model are designed to reflect their mathematical meanings. In addition, an adaptive wavelet module is also utilized to enhance the flexibility of the model. To optimize the model, an iterative algorithm is developed. The evaluation on both synthetic and real clinical datasets consistently confirms the superior performance of the proposed method over the competing methods.
Collapse
|
2
|
Xie K, Gao L, Zhang Y, Zhang H, Sun J, Lin T, Sui J, Ni X. Metal implant segmentation in CT images based on diffusion model. BMC Med Imaging 2024; 24:204. [PMID: 39107679 PMCID: PMC11301972 DOI: 10.1186/s12880-024-01379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Computed tomography (CT) is widely in clinics and is affected by metal implants. Metal segmentation is crucial for metal artifact correction, and the common threshold method often fails to accurately segment metals. PURPOSE This study aims to segment metal implants in CT images using a diffusion model and further validate it with clinical artifact images and phantom images of known size. METHODS A retrospective study was conducted on 100 patients who received radiation therapy without metal artifacts, and simulated artifact data were generated using publicly available mask data. The study utilized 11,280 slices for training and verification, and 2,820 slices for testing. Metal mask segmentation was performed using DiffSeg, a diffusion model incorporating conditional dynamic coding and a global frequency parser (GFParser). Conditional dynamic coding fuses the current segmentation mask and prior images at multiple scales, while GFParser helps eliminate high-frequency noise in the mask. Clinical artifact images and phantom images are also used for model validation. RESULTS Compared with the ground truth, the accuracy of DiffSeg for metal segmentation of simulated data was 97.89% and that of DSC was 95.45%. The mask shape obtained by threshold segmentation covered the ground truth and DSCs were 82.92% and 84.19% for threshold segmentation based on 2500 HU and 3000 HU. Evaluation metrics and visualization results show that DiffSeg performs better than other classical deep learning networks, especially for clinical CT, artifact data, and phantom data. CONCLUSION DiffSeg efficiently and robustly segments metal masks in artifact data with conditional dynamic coding and GFParser. Future work will involve embedding the metal segmentation model in metal artifact reduction to improve the reduction effect.
Collapse
Affiliation(s)
- Kai Xie
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China
| | - Liugang Gao
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China
| | - Yutao Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, 213000, China
| | - Heng Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou, 213000, China
| | - Jiawei Sun
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China
| | - Tao Lin
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China
| | - Jianfeng Sui
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China
| | - Xinye Ni
- Radiotherapy Department, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, 213000, China.
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, China.
- Changzhou Key Laboratory of Medical Physics, Changzhou, 213000, China.
| |
Collapse
|
3
|
Yu J, Zhang H, Zhang P, Zhu Y. Unsupervised learning-based dual-domain method for low-dose CT denoising. Phys Med Biol 2023; 68:185010. [PMID: 37567225 DOI: 10.1088/1361-6560/acefa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Objective. Low-dose CT (LDCT) is an important research topic in the field of CT imaging because of its ability to reduce radiation damage in clinical diagnosis. In recent years, deep learning techniques have been widely applied in LDCT imaging and a large number of denoising methods have been proposed. However, One major challenge of supervised deep learning-based methods is the exactly geometric pairing of datasets with different doses. Therefore, the aim of this study is to develop an unsupervised learning-based LDCT imaging method to address the aforementioned challenges.Approach. In this paper, we propose an unsupervised learning-based dual-domain method for LDCT denoising, which consists of two stages: the first stage is projection domain denoising, in which the unsupervised learning method Noise2Self is applied to denoise the projection data with statistically independent and zero-mean noise. The second stage is an iterative enhancement approach, which combines the prior information obtained from the generative model with an iterative reconstruction algorithm to enhance the details of the reconstructed image.Main results. Experimental results show that our proposed method outperforms the comparison method in terms of denoising effect. Particularly, in terms of SSIM, the denoised results obtained using our method achieve the highest SSIM.Significance. In conclusion, our unsupervised learning-based method can be a promising alternative to the traditional supervised methods for LDCT imaging, especially when the availability of the labeled datasets is limited.
Collapse
Affiliation(s)
- Jie Yu
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Huitao Zhang
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
- Shenzhen National Applied Mathematics Center, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Peng Zhang
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yining Zhu
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
- Shenzhen National Applied Mathematics Center, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
4
|
Tang H, Lin YB, Jiang SD, Li Y, Li T, Bao XD. A new dental CBCT metal artifact reduction method based on a dual-domain processing framework. Phys Med Biol 2023; 68:175016. [PMID: 37524084 DOI: 10.1088/1361-6560/acec29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Cone beam computed tomography (CBCT) has been wildly used in clinical treatment of dental diseases. However, patients often have metallic implants in mouth, which will lead to severe metal artifacts in the reconstructed images. To reduce metal artifacts in dental CBCT images, which have a larger amount of data and a limited field of view compared to computed tomography images, a new dental CBCT metal artifact reduction method based on a projection correction and a convolutional neural network (CNN) based image post-processing model is proposed in this paper. Approach.The proposed method consists of three stages: (1) volume reconstruction and metal segmentation in the image domain, using the forward projection to get the metal masks in the projection domain; (2) linear interpolation in the projection domain and reconstruction to build a linear interpolation (LI) corrected volume; (3) take the LI corrected volume as prior and perform the prior based beam hardening correction in the projection domain, and (4) combine the constructed projection corrected volume and LI-volume slice-by-slice in the image domain by two concatenated U-Net based models (CNN1 and CNN2). Simulated and clinical dental CBCT cases are used to evaluate the proposed method. The normalized root means square difference (NRMSD) and the structural similarity index (SSIM) are used for the quantitative evaluation of the method.Main results.The proposed method outperforms the frequency domain fusion method (FS-MAR) and a state-of-art CNN based method on the simulated dataset and yields the best NRMSD and SSIM of 4.0196 and 0.9924, respectively. Visual results on both simulated and clinical images also illustrate that the proposed method can effectively reduce metal artifacts.Significance. This study demonstrated that the proposed dual-domain processing framework is suitable for metal artifact reduction in dental CBCT images.
Collapse
Affiliation(s)
- Hui Tang
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, Nanjing, People's Republic of China
| | - Yu Bing Lin
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Su Dong Jiang
- School of Software Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yu Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xu Dong Bao
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Wang H, Li Y, Zhang H, Meng D, Zheng Y. InDuDoNet+: A deep unfolding dual domain network for metal artifact reduction in CT images. Med Image Anal 2023; 85:102729. [PMID: 36623381 DOI: 10.1016/j.media.2022.102729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022]
Abstract
During the computed tomography (CT) imaging process, metallic implants within patients often cause harmful artifacts, which adversely degrade the visual quality of reconstructed CT images and negatively affect the subsequent clinical diagnosis. For the metal artifact reduction (MAR) task, current deep learning based methods have achieved promising performance. However, most of them share two main common limitations: (1) the CT physical imaging geometry constraint is not comprehensively incorporated into deep network structures; (2) the entire framework has weak interpretability for the specific MAR task; hence, the role of each network module is difficult to be evaluated. To alleviate these issues, in the paper, we construct a novel deep unfolding dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded. Concretely, we derive a joint spatial and Radon domain reconstruction model and propose an optimization algorithm with only simple operators for solving it. By unfolding the iterative steps involved in the proposed algorithm into the corresponding network modules, we easily build the InDuDoNet+ with clear interpretability. Furthermore, we analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance. Comprehensive experiments on synthesized data and clinical data substantiate the superiority of the proposed methods as well as the superior generalization performance beyond the current state-of-the-art (SOTA) MAR methods. Code is available at https://github.com/hongwang01/InDuDoNet_plus.
Collapse
Affiliation(s)
| | | | - Haimiao Zhang
- Beijing Information Science and Technology University, Beijing, China
| | - Deyu Meng
- Xi'an Jiaotong University, Xi'an, China; Peng Cheng Laboratory, Shenzhen, China; Macau University of Science and Technology, Taipa, Macao.
| | | |
Collapse
|
6
|
Zhu M, Zhu Q, Song Y, Guo Y, Zeng D, Bian Z, Wang Y, Ma J. Physics-informed sinogram completion for metal artifact reduction in CT imaging. Phys Med Biol 2023; 68. [PMID: 36808913 DOI: 10.1088/1361-6560/acbddf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective.Metal artifacts in the computed tomography (CT) imaging are unavoidably adverse to the clinical diagnosis and treatment outcomes. Most metal artifact reduction (MAR) methods easily result in the over-smoothing problem and loss of structure details near the metal implants, especially for these metal implants with irregular elongated shapes. To address this problem, we present the physics-informed sinogram completion (PISC) method for MAR in CT imaging, to reduce metal artifacts and recover more structural textures.Approach.Specifically, the original uncorrected sinogram is firstly completed by the normalized linear interpolation algorithm to reduce metal artifacts. Simultaneously, the uncorrected sinogram is also corrected based on the beam-hardening correction physical model, to recover the latent structure information in metal trajectory region by leveraging the attenuation characteristics of different materials. Both corrected sinograms are fused with the pixel-wise adaptive weights, which are manually designed according to the shape and material information of metal implants. To furtherly reduce artifacts and improve the CT image quality, a post-processing frequency split algorithm is adopted to yield the final corrected CT image after reconstructing the fused sinogram.Main results.We qualitatively and quantitatively evaluated the presented PISC method on two simulated datasets and three real datasets. All results demonstrate that the presented PISC method can effectively correct the metal implants with various shapes and materials, in terms of artifact suppression and structure preservation.Significance.We proposed a sinogram-domain MAR method to compensate for the over-smoothing problem existing in most MAR methods by taking advantage of the physical prior knowledge, which has the potential to improve the performance of the deep learning based MAR approaches.
Collapse
Affiliation(s)
- Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Qisen Zhu
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Yuyan Song
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Yi Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| |
Collapse
|
7
|
Zhu Y, Zhao H, Wang T, Deng L, Yang Y, Jiang Y, Li N, Chan Y, Dai J, Zhang C, Li Y, Xie Y, Liang X. Sinogram domain metal artifact correction of CT via deep learning. Comput Biol Med 2023; 155:106710. [PMID: 36842222 DOI: 10.1016/j.compbiomed.2023.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
PURPOSE Metal artifacts can significantly decrease the quality of computed tomography (CT) images. This occurs as X-rays penetrate implanted metals, causing severe attenuation and resulting in metal artifacts in the CT images. This degradation in image quality can hinder subsequent clinical diagnosis and treatment planning. Beam hardening artifacts are often manifested as severe strip artifacts in the image domain, affecting the overall quality of the reconstructed CT image. In the sinogram domain, metal is typically located in specific areas, and image processing in these regions can preserve image information in other areas, making the model more robust. To address this issue, we propose a region-based correction of beam hardening artifacts in the sinogram domain using deep learning. METHODS We present a model composed of three modules: (a) a Sinogram Metal Segmentation Network (Seg-Net), (b) a Sinogram Enhancement Network (Sino-Net), and (c) a Fusion Module. The model starts by using the Attention U-Net network to segment the metal regions in the sinogram. The segmented metal regions are then interpolated to obtain a sinogram image free of metal. The Sino-Net is then applied to compensate for the loss of organizational and artifact information in the metal regions. The corrected metal sinogram and the interpolated metal-free sinogram are then used to reconstruct the metal CT and metal-free CT images, respectively. Finally, the Fusion Module combines the two CT images to produce the result. RESULTS Our proposed method shows strong performance in both qualitative and quantitative evaluations. The peak signal-to-noise ratio (PSNR) of the CT image before and after correction was 18.22 and 30.32, respectively. The structural similarity index measure (SSIM) improved from 0.75 to 0.99, and the weighted peak signal-to-noise ratio (WPSNR) increased from 21.69 to 35.68. CONCLUSIONS Our proposed method demonstrates the reliability of high-accuracy correction of beam hardening artifacts.
Collapse
Affiliation(s)
- Yulin Zhu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Hanqing Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Deng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yupeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Na Li
- Department of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yinping Chan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yunhui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Richtsmeier D, O'Connell J, Rodesch PA, Iniewski K, Bazalova-Carter M. Metal artifact correction in photon-counting detector computed tomography: metal trace replacement using high-energy data. Med Phys 2023; 50:380-396. [PMID: 36227611 DOI: 10.1002/mp.16049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metal artifacts have been an outstanding issue in computed tomography (CT) since its first uses in the clinic and continue to interfere. Metal artifact reduction (MAR) methods continue to be proposed and photon-counting detectors (PCDs) have recently been the subject of research toward this purpose. PCDs offer the ability to distinguish the energy of incident x-rays and sort them in a set number of energy bins. High-energy data captured using PCDs have been shown to reduce metal artifacts in reconstructions due to reduced beam hardening. PURPOSE High-energy reconstructions using PCD-CT have their drawbacks, such as reduced image contrast and increased noise. Here, we demonstrate a MAR algorithm, trace replacement MAR (TRMAR), in which the data corrupted by metal artifacts in full energy spectrum projections are corrected using the high-energy data captured during the same scan. The resulting reconstructions offer similar MAR to that seen in high-energy reconstructions, but with improved image quality. METHODS Experimental data were collected using a bench-top PCD-CT system with a cadmium zinc telluride PCD. Simulations were performed to determine the optimal high-energy threshold and to test TRMAR in simulations using the XCAT phantom and a biological sample. For experiments a 100-mm diameter cylindrical phantom containing vials of water, two screws, various densities of Ca(ClO4 )2 , and a spatial resolution phantom was imaged with and without the screws. The screws were segmented in the initial reconstruction and forward projected to identify them in the sinogram space in order to perform TRMAR. The resulting reconstructions were compared to the control and to reconstructions corrected using normalized metal artifact reduction (NMAR). Additionally, a beef short rib was imaged with and without metal to provide a more realistic phantom. RESULTS XCAT simulations showed a reduction in the streak artifact from -978 HU in uncorrected images to -10 HU with TRMAR. The magnitude of the metal artifact in uncorrected images of the 100-mm phantom was -442 HU, compared to the desired -81 HU with no metal. TRMAR reduced the magnitude of the artifact to -142 HU, with NMAR reducing the magnitude to -96 HU. Relative image noise was reduced from 176% in the high-energy image to 56% using TRMAR. Density quantification was better with NMAR, with the Ca(ClO4 )2 vial affected most by metal artifacts showing 0.8% error compared to 2.1% with TRMAR. Small features were preserved to a greater extent with TRMAR, with the limiting spatial frequency at 20% of the MTF fully maintained at 1.31 lp/mm, while with NMAR it was reduced to 1.22 lp/mm. Images of the beef short rib showed better delineation of the shape of the metal using TRMAR. CONCLUSIONS NMAR offers slightly better performance compared to TRMAR in streak reduction and image quality metrics. However, TRMAR is less susceptible to metal segmentation errors and can closely approximate the reduction in the streak metal artifact seen in NMAR at 1/3 the computation time. With the recent introduction of PCD-CT into the clinic, TRMAR offers notable potential for fast, effective MAR.
Collapse
Affiliation(s)
- Devon Richtsmeier
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - Jericho O'Connell
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - Pierre-Antoine Rodesch
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - Kris Iniewski
- Redlen Technologies, Saanichton, British Columbia, Canada
| | | |
Collapse
|
9
|
Kim H, Yoo SK, Kim DW, Lee H, Hong CS, Han MC, Kim JS. Metal artifact reduction in kV CT images throughout two-step sequential deep convolutional neural networks by combining multi-modal imaging (MARTIAN). Sci Rep 2022; 12:20823. [PMID: 36460784 PMCID: PMC9718791 DOI: 10.1038/s41598-022-25366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Networks). Most CNNs under supervised learning require artifact-free images to artifact-contaminated images for artifact correction. Mega-voltage (MV) CT is insensitive to metal artifacts, unlike kV CT due to different physical characteristics, which can facilitate the generation of artifact-free synthetic kV CT images throughout the first network (Network 1). The pairs of true kV CT and artifact-free kV CT images after post-processing constructed a subsequent network (Network 2) to conduct the actual MAR process. The proposed framework was implemented by GAN from 90 scans for head-and-neck and brain radiotherapy and validated with 10 independent cases against commercial MAR software. The artifact-free kV CT images following Network 1 and post-processing led to structural similarity (SSIM) of 0.997, and mean-absolute-error (MAE) of 10.2 HU, relative to true kV CT. Network 2 in charge of actual MAR successfully suppressed metal artifacts, relative to commercial MAR, while retaining the detailed imaging information, yielding the SSIM of 0.995 against 0.997 from the commercial MAR.
Collapse
Affiliation(s)
- Hojin Kim
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Sang Kyun Yoo
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Dong Wook Kim
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Ho Lee
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Chae-Seon Hong
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Min Cheol Han
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| | - Jin Sung Kim
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Korea
| |
Collapse
|
10
|
Zhou B, Chen X, Xie H, Zhou SK, Duncan JS, Liu C. DuDoUFNet: Dual-Domain Under-to-Fully-Complete Progressive Restoration Network for Simultaneous Metal Artifact Reduction and Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3587-3599. [PMID: 35816532 PMCID: PMC9812027 DOI: 10.1109/tmi.2022.3189759] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To reduce the potential risk of radiation to the patient, low-dose computed tomography (LDCT) has been widely adopted in clinical practice for reconstructing cross-sectional images using sinograms with reduced x-ray flux. The LDCT image quality is often degraded by different levels of noise depending on the low-dose protocols. The image quality will be further degraded when the patient has metallic implants, where the image suffers from additional streak artifacts along with further amplified noise levels, thus affecting the medical diagnosis and other CT-related applications. Previous studies mainly focused either on denoising LDCT without considering metallic implants or full-dose CT metal artifact reduction (MAR). Directly applying previous LDCT or MAR approaches to the issue of simultaneous metal artifact reduction and low-dose CT (MARLD) may yield sub-optimal reconstruction results. In this work, we develop a dual-domain under-to-fully-complete progressive restoration network, called DuDoUFNet, for MARLD. Our DuDoUFNet aims to reconstruct images with substantially reduced noise and artifact by progressive sinogram to image domain restoration with a two-stage progressive restoration network design. Our experimental results demonstrate that our method can provide high-quality reconstruction, superior to previous LDCT and MAR methods under various low-dose and metal settings.
Collapse
|
11
|
Zhu Q, Wang Y, Zhu M, Tao X, Bian Z, Ma J. [An adaptive CT metal artifact reduction algorithm that combines projection interpolation and physical correction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:832-839. [PMID: 35790433 DOI: 10.12122/j.issn.1673-4254.2022.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To propose an adaptive weighted CT metal artifact reduce algorithm that combines projection interpolation and physical correction. METHODS A normalized metal projection interpolation algorithm was used to obtain the initial corrected projection data. A metal physical correction model was then introduced to obtain the physically corrected projection data. To verify the effectiveness of the method, we conducted experiments using simulation data and clinical data. For the simulation data, the quantitative indicators PSNR and SSIM were used for evaluation, while for the clinical data, the resultant images were evaluated by imaging experts to compare the artifact-reducing performance of different methods. RESULTS For the simulation data, the proposed method improved the PSNR value by at least 0.2 dB and resulted in the highest SSIM value among the methods for comparison. The experiment with the clinical data showed that the imaging experts gave the highest scores of 3.616±0.338 (in a 5-point scale) to the images processed using the proposed method, which had significant better artifact-reducing performance than the other methods (P < 0.001). CONCLUSION The metal artifact reduction algorithm proposed herein can effectively reduce metal artifacts while preserving the tissue structure information and reducing the generation of new artifacts.
Collapse
Affiliation(s)
- Q Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.,Pazhou Lab, Guangzhou 510330, China
| | - Y Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.,Pazhou Lab, Guangzhou 510330, China
| | - M Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.,Pazhou Lab, Guangzhou 510330, China
| | - X Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.,Pazhou Lab, Guangzhou 510330, China
| | - Z Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - J Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Wang H, Li Y, He N, Ma K, Meng D, Zheng Y. DICDNet: Deep Interpretable Convolutional Dictionary Network for Metal Artifact Reduction in CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:869-880. [PMID: 34752391 DOI: 10.1109/tmi.2021.3127074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Computed tomography (CT) images are often impaired by unfavorable artifacts caused by metallic implants within patients, which would adversely affect the subsequent clinical diagnosis and treatment. Although the existing deep-learning-based approaches have achieved promising success on metal artifact reduction (MAR) for CT images, most of them treated the task as a general image restoration problem and utilized off-the-shelf network modules for image quality enhancement. Hence, such frameworks always suffer from lack of sufficient model interpretability for the specific task. Besides, the existing MAR techniques largely neglect the intrinsic prior knowledge underlying metal-corrupted CT images which is beneficial for the MAR performance improvement. In this paper, we specifically propose a deep interpretable convolutional dictionary network (DICDNet) for the MAR task. Particularly, we first explore that the metal artifacts always present non-local streaking and star-shape patterns in CT images. Based on such observations, a convolutional dictionary model is deployed to encode the metal artifacts. To solve the model, we propose a novel optimization algorithm based on the proximal gradient technique. With only simple operators, the iterative steps of the proposed algorithm can be easily unfolded into corresponding network modules with specific physical meanings. Comprehensive experiments on synthesized and clinical datasets substantiate the effectiveness of the proposed DICDNet as well as its superior interpretability, compared to current state-of-the-art MAR methods. Code is available at https://github.com/hongwang01/DICDNet.
Collapse
|
13
|
Xu J, Noo F. Convex optimization algorithms in medical image reconstruction-in the age of AI. Phys Med Biol 2022; 67:10.1088/1361-6560/ac3842. [PMID: 34757943 PMCID: PMC10405576 DOI: 10.1088/1361-6560/ac3842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022]
Abstract
The past decade has seen the rapid growth of model based image reconstruction (MBIR) algorithms, which are often applications or adaptations of convex optimization algorithms from the optimization community. We review some state-of-the-art algorithms that have enjoyed wide popularity in medical image reconstruction, emphasize known connections between different algorithms, and discuss practical issues such as computation and memory cost. More recently, deep learning (DL) has forayed into medical imaging, where the latest development tries to exploit the synergy between DL and MBIR to elevate the MBIR's performance. We present existing approaches and emerging trends in DL-enhanced MBIR methods, with particular attention to the underlying role of convexity and convex algorithms on network architecture. We also discuss how convexity can be employed to improve the generalizability and representation power of DL networks in general.
Collapse
Affiliation(s)
- Jingyan Xu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Frédéric Noo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
14
|
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2022.3148373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Inner-ear augmented metal artifact reduction with simulation-based 3D generative adversarial networks. Comput Med Imaging Graph 2021; 93:101990. [PMID: 34607275 DOI: 10.1016/j.compmedimag.2021.101990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022]
Abstract
Metal Artifacts creates often difficulties for a high quality visual assessment of post-operative imaging in computed tomography (CT). A vast body of methods have been proposed to tackle this issue, but these methods were designed for regular CT scans and their performance is usually insufficient when imaging tiny implants. In the context of post-operative high-resolution CT imaging, we propose a 3D metal artifact reduction algorithm based on a generative adversarial neural network. It is based on the simulation of physically realistic CT metal artifacts created by cochlea implant electrodes on preoperative images. The generated images serve to train a 3D generative adversarial networks for artifacts reduction. The proposed approach was assessed qualitatively and quantitatively on clinical conventional and cone beam CT of cochlear implant postoperative images. These experiments show that the proposed method outperforms other general metal artifact reduction approaches.
Collapse
|
16
|
Yu L, Zhang Z, Li X, Ren H, Zhao W, Xing L. Metal artifact reduction in 2D CT images with self-supervised cross-domain learning. Phys Med Biol 2021; 66. [PMID: 34330119 DOI: 10.1088/1361-6560/ac195c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022]
Abstract
The presence of metallic implants often introduces severe metal artifacts in the x-ray computed tomography (CT) images, which could adversely influence clinical diagnosis or dose calculation in radiation therapy. In this work, we present a novel deep-learning-based approach for metal artifact reduction (MAR). In order to alleviate the need for anatomically identical CT image pairs (i.e. metal artifact-corrupted CT image and metal artifact-free CT image) for network learning, we propose a self-supervised cross-domain learning framework. Specifically, we train a neural network to restore the metal trace region values in the given metal-free sinogram, where the metal trace is identified by the forward projection of metal masks. We then design a novel filtered backward projection (FBP) reconstruction loss to encourage the network to generate more perfect completion results and a residual-learning-based image refinement module to reduce the secondary artifacts in the reconstructed CT images. To preserve the fine structure details and fidelity of the final MAR image, instead of directly adopting convolutional neural network (CNN)-refined images as output, we incorporate the metal trace replacement into our framework and replace the metal-affected projections of the original sinogram with the prior sinogram generated by the forward projection of the CNN output. We then use the FBP algorithms for final MAR image reconstruction. We conduct an extensive evaluation on simulated and real artifact data to show the effectiveness of our design. Our method produces superior MAR results and outperforms other compelling methods. We also demonstrate the potential of our framework for other organ sites.
Collapse
Affiliation(s)
- Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China, and also with the Department of Radiation Oncology, Stanford University, United States of America
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, United States of America
| | - Xiaomeng Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China, and also with the Department of Radiation Oncology, Stanford University, United States of America
| | - Hongyi Ren
- Department of Radiation Oncology, Stanford University, United States of America
| | - Wei Zhao
- Department of Radiation Oncology, Stanford University, United States of America
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, United States of America
| |
Collapse
|
17
|
Moon S, Choi S, Jang H, Shin M, Roh Y, Baek J. Geometry calibration and image reconstruction for carbon-nanotube-based multisource and multidetector CT. Phys Med Biol 2021; 66. [PMID: 34289459 DOI: 10.1088/1361-6560/ac16c1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022]
Abstract
Conventional intraoperative computed tomography (CT) has a long scan time, degrading the image quality. Its large size limits the position of a surgeon during surgery. Therefore, this study proposes a CT system comprising of eight carbon-nanotube (CNT)-based x-ray sources and 16 detector modules to solve these limitations. Gantry only requires 45° of rotation to acquire the whole projection, reducing the scan time to 1/8 compared to the full rotation. Moreover, the volume and scan time of the system can be significantly reduced using CNT sources with a small volume and short pulse width and placing a heavy and large high-voltage generator outside the gantry. We divided the proposed system into eight subsystems and sequentially devised a geometry calibration method for each subsystem. Accordingly, a calibration phantom consisting of four polytetrafluoroethylene beads, each with 15 mm diameter, was designed. The geometry calibration parameters were estimated by minimizing the difference between the measured bead projection and the forward projection of the formulated subsystem. By reflecting the estimated geometry calibration parameters, the projection data were obtained via rebinning to be used in the filtered-backprojection reconstruction. The proposed calibration and reconstruction methods were validated by computer simulations and real experiments. Additionally, the accuracy of the geometry calibration method was examined by computer simulation. Furthermore, we validated the improved quality of the reconstructed image through the mean-squared error (MSE), structure similarity (SSIM), and visual inspections for both the simulated and experimental data. The results show that the calibrated images, reconstructed by reflecting the calibration results, have smaller MSE and higher SSIM values than the uncalibrated images. The calibrated images were observed to have fewer artifacts than the uncalibrated images in visual inspection, demonstrating that the proposed calibration and reconstruction methods effectively reduce artifacts caused by geometry misalignments.
Collapse
Affiliation(s)
- Seunghyuk Moon
- School of Integrated Technology, Yonsei University, Incheon, Republic Of Korea
| | - Seungwon Choi
- School of Integrated Technology, Yonsei University, Incheon, Republic Of Korea
| | - Hanjoo Jang
- School of Integrated Technology, Yonsei University, Incheon, Republic Of Korea
| | - Minsik Shin
- KohYoung Technology, Yongin, Republic Of Korea
| | | | - Jongduk Baek
- School of Integrated Technology, Yonsei University, Incheon, Republic Of Korea
| |
Collapse
|
18
|
Wang T, Xia W, Huang Y, Sun H, Liu Y, Chen H, Zhou J, Zhang Y. DAN-Net: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction. Phys Med Biol 2021; 66. [PMID: 34225262 DOI: 10.1088/1361-6560/ac1156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Metallic implants can heavily attenuate x-rays in computed tomography (CT) scans, leading to severe artifacts in reconstructed images, which significantly jeopardize image quality and negatively impact subsequent diagnoses and treatment planning. With the rapid development of deep learning in the field of medical imaging, several network models have been proposed for metal artifact reduction (MAR) in CT. Despite the encouraging results achieved by these methods, there is still much room to further improve performance. In this paper, a novel dual-domain adaptive-scaling non-local network (DAN-Net) is proposed for MAR. We correct the corrupted sinogram using adaptive scaling first to preserve more tissue and bone details. Then, an end-to-end dual-domain network is adopted to successively process the sinogram and its corresponding reconstructed image is generated by the analytical reconstruction layer. In addition, to better suppress the existing artifacts and restrain the potential secondary artifacts caused by inaccurate results of the sinogram-domain network, a novel residual sinogram learning strategy and non-local module are leveraged in the proposed network model. Experiments demonstrate the performance of the proposed DAN-Net is competitive with several state-of-the-art MAR methods in both qualitative and quantitative aspects.
Collapse
Affiliation(s)
- Tao Wang
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenjun Xia
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yongqiang Huang
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| | - Huaiqiang Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Liu
- College of Electrical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hu Chen
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jiliu Zhou
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yi Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
19
|
Rodríguez-Gallo Y, Orozco-Morales R, Pérez-Díaz M. Inpainting-filtering for metal artifact reduction (IMIF-MAR) in computed tomography. Phys Eng Sci Med 2021; 44:409-423. [PMID: 33761106 DOI: 10.1007/s13246-021-00990-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022]
Abstract
The reduction of metal artifacts remains a challenge in computed tomography because they decrease image quality, and consequently might affect the medical diagnosis. The objective of this study is to present a novel method to correct metal artifacts based solely on the CT-slices. The proposed method consists of four steps. First, metal implants in the original CT-slice are segmented using an entropy based method, producing a metal image. Second, a prior image is acquired using three transformations: Gaussian filter, Parisotto and Schoenlieb inpainting method with the Mumford-Shah image model and L0 Gradient Minimization method (L0GM). Next, based on the projections from the original CT-slice, prior image and metal image, the sinogram is corrected in the traces affected by metal in the process called normalization and denormalization. Finally, the reconstructed image is obtained by FBP and a Nonlocal Means (NLM) filtering. The efficacy of the algorithm is evaluated by comparing five image quality metrics of the images and by inspecting regions of interest (ROI). Phantom data as well as clinical datasets are included. The proposed method is compared with three established metal artifact reduction (MAR) methods. The results from a phantom and clinical dataset show the visible reduction of artifacts. The conclusion is that IMIF-MAR method can reduce streak metal artifacts effectively and avoid new artifacts around metal implants, while preserving the anatomical structures. Considering both clinical and phantom studies, the proposed MAR algorithm improves the quality of clinical images affected by metal artifacts, and could be integrated in clinical setting.
Collapse
Affiliation(s)
- Yakdiel Rodríguez-Gallo
- Departamento de Electrónica y Telecomunicaciones, Universidad Central 'Marta Abreu' de Las Villas, Santa Clara, Cuba
| | - Rubén Orozco-Morales
- Departamento de Control Automático, Universidad Central 'Marta Abreu' de Las Villas, Carretera a Camajuani km 5 ½, 54830, Santa Clara, Villa Clara, Cuba
| | - Marlen Pérez-Díaz
- Departamento de Control Automático, Universidad Central 'Marta Abreu' de Las Villas, Carretera a Camajuani km 5 ½, 54830, Santa Clara, Villa Clara, Cuba.
| |
Collapse
|
20
|
Hur J, Kim D, Shin YG, Lee H. Metal artifact reduction method based on a constrained beam-hardening estimator for polychromatic x-ray CT. Phys Med Biol 2021; 66:065025. [PMID: 33498020 DOI: 10.1088/1361-6560/abe026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beam hardening in x-ray computed tomography (CT) is inevitable because of the polychromatic x-ray spectrum and energy-dependent attenuation coefficients of materials, leading to the underestimation of artifacts arising from projection data, especially on metal regions. State-of-the-art research on beam-hardening artifacts is based on a numerical method that recursively performs CT reconstruction, which leads to a heavy computational burden. To address this computational issue, we propose a constrained beam-hardening estimator that provides an efficient numerical solution via a linear combination of two images reconstructed only once during the entire process. The proposed estimator reflects the geometry of metal objects and physical characteristics of beam hardening during the transmission of polychromatic x-rays through a material. Most of the associated parameters are numerically obtained from an initial uncorrected CT image and forward projection transformation without additional optimization procedures. Only the unknown parameter related to beam-hardening artifacts is fine-tuned by linear optimization, which is performed only in the reconstruction image domain. The proposed approach was systematically assessed using numerical simulations and phantom data for qualitative and quantitative comparisons. Compared with existing sinogram inpainting-based and model-based approaches, the proposed scheme in conjunction with the constrained beam-hardening estimator not only provided improved image quality in areas surrounding the metal but also achieved fast beam-hardening correction owing to the analytical reconstruction structure. This work may have significant implications in improving dose calculation accuracy or target volume delineation for treatment planning in radiotherapy.
Collapse
Affiliation(s)
- Jin Hur
- Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Zhang J, He Q, Xiao Y, Zheng H, Wang C, Luo J. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Med Image Anal 2021; 70:102018. [PMID: 33711740 DOI: 10.1016/j.media.2021.102018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Image reconstruction from radio-frequency (RF) data is crucial for ultrafast plane wave ultrasound (PWUS) imaging. Compared with the traditional delay-and-sum (DAS) method based on relatively imprecise assumptions, sparse regularization (SR) method directly solves the inverse problem of image reconstruction and has presented significant improvement in the image quality when the frame rate remains high. However, the computational complexity of SR is too high for practical implementation, which is inherently associated with its iterative process. In this work, a deep neural network (DNN), which is trained with an incorporated loss function including sparse regularization terms, is proposed to reconstruct PWUS images from RF data with significantly reduced computational time. It is remarkable that, a self-supervised learning scheme, in which the RF data are utilized as both the inputs and the labels during the training process, is employed to overcome the lack of the "ideal" ultrasound images as the labels for DNN. In addition, it has been also verified that the trained network can be used on the RF data obtained with steered plane waves (PWs), and thus the image quality can be further improved with coherent compounding. Using simulation data, the proposed method has significantly shorter reconstruction time (∼10 ms) than the conventional SR method (∼1-5 mins), with comparable spatial resolution and 1.5-dB higher contrast-to-noise ratio (CNR). Besides, the proposed method with single PW can achieve higher CNR than DAS with 75 PWs in reconstruction of in-vivo images of human carotid arteries.
Collapse
Affiliation(s)
- Jingke Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences Department, Tsinghua University, Beijing 100084, China
| | - Yang Xiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Congzhi Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518055, China.
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Deep learning-based metal artefact reduction in PET/CT imaging. Eur Radiol 2021; 31:6384-6396. [PMID: 33569626 PMCID: PMC8270868 DOI: 10.1007/s00330-021-07709-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Objectives The susceptibility of CT imaging to metallic objects gives rise to strong streak artefacts and skewed information about the attenuation medium around the metallic implants. This metal-induced artefact in CT images leads to inaccurate attenuation correction in PET/CT imaging. This study investigates the potential of deep learning–based metal artefact reduction (MAR) in quantitative PET/CT imaging. Methods Deep learning–based metal artefact reduction approaches were implemented in the image (DLI-MAR) and projection (DLP-MAR) domains. The proposed algorithms were quantitatively compared to the normalized MAR (NMAR) method using simulated and clinical studies. Eighty metal-free CT images were employed for simulation of metal artefact as well as training and evaluation of the aforementioned MAR approaches. Thirty 18F-FDG PET/CT images affected by the presence of metallic implants were retrospectively employed for clinical assessment of the MAR techniques. Results The evaluation of MAR techniques on the simulation dataset demonstrated the superior performance of the DLI-MAR approach (structural similarity (SSIM) = 0.95 ± 0.2 compared to 0.94 ± 0.2 and 0.93 ± 0.3 obtained using DLP-MAR and NMAR, respectively) in minimizing metal artefacts in CT images. The presence of metallic artefacts in CT images or PET attenuation correction maps led to quantitative bias, image artefacts and under- and overestimation of scatter correction of PET images. The DLI-MAR technique led to a quantitative PET bias of 1.3 ± 3% compared to 10.5 ± 6% without MAR and 3.2 ± 0.5% achieved by NMAR. Conclusion The DLI-MAR technique was able to reduce the adverse effects of metal artefacts on PET images through the generation of accurate attenuation maps from corrupted CT images. Key Points • The presence of metallic objects, such as dental implants, gives rise to severe photon starvation, beam hardening and scattering, thus leading to adverse artefacts in reconstructed CT images. • The aim of this work is to develop and evaluate a deep learning–based MAR to improve CT-based attenuation and scatter correction in PET/CT imaging. • Deep learning–based MAR in the image (DLI-MAR) domain outperformed its counterpart implemented in the projection (DLP-MAR) domain. The DLI-MAR approach minimized the adverse impact of metal artefacts on whole-body PET images through generating accurate attenuation maps from corrupted CT images. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07709-z.
Collapse
|
23
|
Yu L, Zhang Z, Li X, Xing L. Deep Sinogram Completion With Image Prior for Metal Artifact Reduction in CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:228-238. [PMID: 32956044 PMCID: PMC7875504 DOI: 10.1109/tmi.2020.3025064] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Computed tomography (CT) has been widely used for medical diagnosis, assessment, and therapy planning and guidance. In reality, CT images may be affected adversely in the presence of metallic objects, which could lead to severe metal artifacts and influence clinical diagnosis or dose calculation in radiation therapy. In this article, we propose a generalizable framework for metal artifact reduction (MAR) by simultaneously leveraging the advantages of image domain and sinogram domain-based MAR techniques. We formulate our framework as a sinogram completion problem and train a neural network (SinoNet) to restore the metal-affected projections. To improve the continuity of the completed projections at the boundary of metal trace and thus alleviate new artifacts in the reconstructed CT images, we train another neural network (PriorNet) to generate a good prior image to guide sinogram learning, and further design a novel residual sinogram learning strategy to effectively utilize the prior image information for better sinogram completion. The two networks are jointly trained in an end-to-end fashion with a differentiable forward projection (FP) operation so that the prior image generation and deep sinogram completion procedures can benefit from each other. Finally, the artifact-reduced CT images are reconstructed using the filtered backward projection (FBP) from the completed sinogram. Extensive experiments on simulated and real artifacts data demonstrate that our method produces superior artifact-reduced results while preserving the anatomical structures and outperforms other MAR methods.
Collapse
|
24
|
Humphries T, Wang BJ. Superiorized method for metal artifact reduction. Med Phys 2020; 47:3984-3995. [PMID: 32542688 DOI: 10.1002/mp.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Metal artifact reduction (MAR) is a challenging problem in computed tomography (CT) imaging. A popular class of MAR methods replace sinogram measurements that are corrupted by metal with artificial data, typically generated from some combination of interpolation along with other heuristics. While these "projection completion" approaches are successful in eliminating severe artifacts, secondary artifacts may be introduced by the artificial data. In this paper, we propose an approach which uses projection completion to generate a prior image, which is then incorporated into an iterative reconstruction algorithm based on the superiorization framework. The rationale is that the image produced by the iterative algorithm can inherit the desirable properties of the prior image, while also reducing secondary artifacts. METHODS The prior image is reconstructed using normalized metal artifact reduction (NMAR), a popular projection completion approach. The iterative algorithm is a modified version of the simultaneous algebraic reconstruction technique (SART), which reduces artifacts by incorporating a polyenergetic forward model, least-squares weighting, and superiorization. The penalty function used for superiorization is a weighted average between a total variation (TV) term and a term promoting similarity with the prior image, similar to penalty functions used in prior image constrained compressive sensing (PICCS). Because the prior is largely free of severe metal artifacts, these artifacts are discouraged from arising during iterative reconstruction; additionally, because the iterative approach uses the original projection data, it is able to recover information that is lost during the NMAR process. RESULTS We perform numerical experiments modeling a simple geometric object, as well as several more realistic scenarios such as metal pins, bilateral hip implants, and dental fillings placed within an anatomical phantom. The proposed iterative algorithm is largely successful at eliminating severe metal artifacts as well as secondary artifacts introduced by the NMAR process, especially lost edges of bone structures in the neighborhood of the metal regions. In one case modeling severe photon starvation, the NMAR algorithm is found to provide better results. CONCLUSION The proposed algorithm is effective in applying the superiorization methodology to the problem of MAR, providing better results than both NMAR and a purely total variation-based superiorization approach in nearly all cases.
Collapse
Affiliation(s)
- Thomas Humphries
- School of STEM, University of Washington Bothell, Box 358538, 18115 Campus Way NE, Bothell, WA, 98011, USA
| | - Boyang Jessie Wang
- School of STEM, University of Washington Bothell, Box 358538, 18115 Campus Way NE, Bothell, WA, 98011, USA
| |
Collapse
|
25
|
Abstract
The Radon transform is widely used in physical and life sciences, and one of its major applications is in medical X-ray computed tomography (CT), which is significantly important in disease screening and diagnosis. In this paper, we propose a novel reconstruction framework for Radon inversion with deep learning (DL) techniques. For simplicity, the proposed framework is denoted as iRadonMAP, i.e., inverse Radon transform approximation. Specifically, we construct an interpretable neural network that contains three dedicated components. The first component is a fully connected filtering (FCF) layer along the rotation angle direction in the sinogram domain, and the second one is a sinusoidal back-projection (SBP) layer, which back-projects the filtered sinogram data into the spatial domain. Next, a common network structure is added to further improve the overall performance. iRadonMAP is first pretrained on a large number of generic images from the ImageNet database and then fine-tuned with clinical patient data. The experimental results demonstrate the feasibility of the proposed iRadonMAP framework for Radon inversion.
Collapse
|
26
|
Cupping artifacts correction for polychromatic X-ray cone-beam computed tomography based on projection compensation and hardening behavior. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Us D, Ruotsalainen U, Pursiainen S. Combining dual-tree complex wavelets and multiresolution in iterative CT reconstruction with application to metal artifact reduction. Biomed Eng Online 2019; 18:116. [PMID: 31806022 PMCID: PMC6896265 DOI: 10.1186/s12938-019-0727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Background This paper investigates the benefits of data filtering via complex dual wavelet transform for metal artifact reduction (MAR). The advantage of using complex dual wavelet basis for MAR was studied on simulated dental computed tomography (CT) data for its efficiency in terms of noise suppression and removal of secondary artifacts. Dual-tree complex wavelet transform (DT-CWT) was selected due to its enhanced directional analysis of image details compared to the ordinary wavelet transform. DT-CWT was used for multiresolution decomposition within a modified total variation (TV) regularized inversion algorithm. Methods In this study, we have tested the multiresolution TV (MRTV) approach with DT-CWT on a 2D polychromatic jaw phantom model with Gaussian and Poisson noise. High noise and sparse measurement settings were used to assess the performance of DT-CWT. The results were compared to the outcome of the single-resolution reconstruction and filtered back-projection (FBP) techniques as well as reconstructions with Haar wavelet basis. Results The results indicate that filtering of wavelet coefficients with DT-CWT effectively removes the noise without introducing new artifacts after inpainting. Furthermore, adoption of multiple resolution levels yield to a more robust algorithm compared to varying the regularization strength. Conclusions The multiresolution reconstruction with DT-CWT is also more robust when reconstructing the data with sparse projections compared to the single-resolution approach and Haar wavelets.
Collapse
Affiliation(s)
- Defne Us
- Laboratory of Signal Processing, Tampere University, Korkeakoulunkatu 1, 33720, Tampere, Finland. .,Laboratory of Mathematics, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| | - Ulla Ruotsalainen
- Laboratory of Signal Processing, Tampere University, Korkeakoulunkatu 1, 33720, Tampere, Finland
| | - Sampsa Pursiainen
- Laboratory of Mathematics, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| |
Collapse
|
28
|
Park HS, Lee SM, Kim HP, Seo JK, Chung YE. CT sinogram-consistency learning for metal-induced beam hardening correction. Med Phys 2018; 45:5376-5384. [PMID: 30238586 DOI: 10.1002/mp.13199] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This paper proposes a sinogram-consistency learning method to deal with beam hardening-related artifacts in polychromatic computerized tomography (CT). The presence of highly attenuating materials in the scan field causes an inconsistent sinogram that does not match the range space of the Radon transform. When the mismatched data are entered into the range space during CT reconstruction, streaking and shading artifacts are generated owing to the inherent nature of the inverse Radon transform METHODS: The proposed learning method aims to repair inconsistent sinogram by removing the primary metal-induced beam hardening factors along the metal trace in the sinogram. Taking account of the fundamental difficulty in obtaining sufficient training data in a medical environment, the learning method is designed to use simulated training data and a patient's implant type-specific learning model is used to simplify the learning process. RESULTS The feasibility of the proposed method is investigated using a dataset, consisting of real CT scans of pelvises containing simulated hip prostheses. The anatomical areas in training and test data are different, in order to demonstrate that the proposed method extracts the beam hardening features, selectively. The results show that our method successfully corrects sinogram inconsistency by extracting beam hardening sources by means of deep learning. CONCLUSION This paper proposed a deep learning method of sinogram correction for beam hardening reduction in CT for the first time. Conventional methods for beam hardening reduction are based on regularizations, and have the fundamental drawback of being not easily able to use manifold CT images, while a deep learning approach has the potential to do so.
Collapse
Affiliation(s)
- Hyoung Suk Park
- Division of Integrated Mathematics, National Institute for Mathematical Sciences, Daejeon, 34047, Korea
| | - Sung Min Lee
- Department of Computational Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Hwa Pyung Kim
- Department of Computational Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Jin Keun Seo
- Department of Computational Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
29
|
Oh D, Kim S, Park D, Choi S, Song H, Choi Y, Moon S, Baek J, Hwang D. Correction of severe beam-hardening artifacts via a high-order linearization function using a prior-image-based parameter selection method. Med Phys 2018; 45:4133-4144. [PMID: 29959771 DOI: 10.1002/mp.13072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 02/28/2024] Open
Abstract
PURPOSE Polychromatic x-rays are used in most computed tomography scanners. In this case, a beam-hardening effect occurs, which degrades the image quality and distorts the shapes of objects in the reconstructed images. When the beam-hardening artifact is not severe, conventional correction methods can reduce the artifact reasonably well. However, highly dense materials, such as iron and titanium, can produce more severe beam-hardening artifacts, which often cannot be corrected by conventional methods. Moreover, when the size of the metal is large, severe darks bands due to photon starvation as well as beam-hardening are generated. The purpose of our study was to develop a new method for correcting severe beam-hardening artifacts and severe dark bands using a high-order polynomial correction function and a prior-image-based linearization method. METHODS The initial estimate of an image free of beam-hardening (a prior image) was constructed from the initial reconstruction of the original projection data. Its corresponding beam-hardening-free projection data (a prior projection) were calculated by a projection operator onto the prior image. A new beam-hardening correction function G(praw ) with many high-order terms was effectively determined via a simple minimization process applied to the difference between the original projection data and the prior projection data. Using the determined correction function G(praw ), a corrected linearized sinogram pcorr can be obtained, which became effectively linear for the line integrals of the object. Final beam-hardening corrected images can be reconstructed from the linearized sinogram. The proposed method was evaluated in both simulation and real experimental studies. RESULTS All investigated cases in both simulations and real experiments showed that the proposed method effectively removed not only streaks for moderate beam-hardening artifacts but also dark bands for severe beam-hardening artifacts without causing structural and contrast distortion. CONCLUSIONS The prior-image-based linearization method exhibited better correction performance than conventional methods. Because the proposed method did not require time-consuming iterative reconstruction processes to obtain the optimal correction function, it can expedite the correction procedure and incorporate more high-order terms in the linearization correction function in comparison to the conventional methods.
Collapse
Affiliation(s)
- Daejoong Oh
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sewon Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Doohyun Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seungwon Choi
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdo-gwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Hundong Song
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdo-gwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Yunsu Choi
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdo-gwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Seunghyuk Moon
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdo-gwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Jongduk Baek
- School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University, 85 Songdo-gwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
30
|
Zhang Y, Yu H. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1370-1381. [PMID: 29870366 PMCID: PMC5998663 DOI: 10.1109/tmi.2018.2823083] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the presence of metal implants, metal artifacts are introduced to x-ray computed tomography CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past decades, MAR is still one of the major problems in clinical x-ray CT. In this paper, we develop a convolutional neural network (CNN)-based open MAR framework, which fuses the information from the original and corrected images to suppress artifacts. The proposed approach consists of two phases. In the CNN training phase, we build a database consisting of metal-free, metal-inserted and pre-corrected CT images, and image patches are extracted and used for CNN training. In the MAR phase, the uncorrected and pre-corrected images are used as the input of the trained CNN to generate a CNN image with reduced artifacts. To further reduce the remaining artifacts, water equivalent tissues in a CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal-affected projections, followed by the FBP reconstruction. The effectiveness of the proposed method is validated on both simulated and real data. Experimental results demonstrate the superior MAR capability of the proposed method to its competitors in terms of artifact suppression and preservation of anatomical structures in the vicinity of metal implants.
Collapse
|
31
|
Metal Artifact Reduction in X-ray Computed Tomography Using Computer-Aided Design Data of Implants as Prior Information. Invest Radiol 2018; 52:349-359. [PMID: 28106615 DOI: 10.1097/rli.0000000000000345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The performance of metal artifact reduction (MAR) methods in x-ray computed tomography (CT) suffers from incorrect identification of metallic implants in the artifact-affected volumetric images. The aim of this study was to investigate potential improvements of state-of-the-art MAR methods by using prior information on geometry and material of the implant. MATERIALS AND METHODS The influence of a novel prior knowledge-based segmentation (PS) compared with threshold-based segmentation (TS) on 2 MAR methods (linear interpolation [LI] and normalized-MAR [NORMAR]) was investigated. The segmentation is the initial step of both MAR methods. Prior knowledge-based segmentation uses 3-dimensional registered computer-aided design (CAD) data as prior knowledge to estimate the correct position and orientation of the metallic objects. Threshold-based segmentation uses an adaptive threshold to identify metal. Subsequently, for LI and NORMAR, the selected voxels are projected into the raw data domain to mark metal areas. Attenuation values in these areas are replaced by different interpolation schemes followed by a second reconstruction. Finally, the previously selected metal voxels are replaced by the metal voxels determined by PS or TS in the initial reconstruction. First, we investigated in an elaborate phantom study if the knowledge of the exact implant shape extracted from the CAD data provided by the manufacturer of the implant can improve the MAR result. Second, the leg of a human cadaver was scanned using a clinical CT system before and after the implantation of an artificial knee joint. The results were compared regarding segmentation accuracy, CT number accuracy, and the restoration of distorted structures. RESULTS The use of PS improved the efficacy of LI and NORMAR compared with TS. Artifacts caused by insufficient segmentation were reduced, and additional information was made available within the projection data. The estimation of the implant shape was more exact and not dependent on a threshold value. Consequently, the visibility of structures was improved when comparing the new approach to the standard method. This was further confirmed by improved CT value accuracy and reduced image noise. CONCLUSIONS The PS approach based on prior implant information provides image quality which is superior to TS-based MAR, especially when the shape of the metallic implant is complex. The new approach can be useful for improving MAR methods and dose calculations within radiation therapy based on the MAR corrected CT images.
Collapse
|
32
|
Peng C, Qiu B, Li M, Yang Y, Zhang C, Gong L, Zheng J. GPU-Accelerated Dynamic Wavelet Thresholding Algorithm for X-Ray CT Metal Artifact Reduction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2776970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Hegazy MAA, Eldib ME, Hernandez D, Cho MH, Cho MH, Lee SY. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography. Med Phys 2017; 45:714-724. [PMID: 29220087 DOI: 10.1002/mp.12719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. METHODS Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kVp ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. RESULTS We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. CONCLUSIONS The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures.
Collapse
Affiliation(s)
- Mohamed A A Hegazy
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Mohamed Elsayed Eldib
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Daniel Hernandez
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Myung Hye Cho
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Min Hyoung Cho
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| | - Soo Yeol Lee
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea
| |
Collapse
|
34
|
Lee SM, Seo JK, Chung YE, Baek J, Park HS. Technical Note: A model-based sinogram correction for beam hardening artifact reduction in CT. Med Phys 2017; 44:e147-e152. [PMID: 28901618 DOI: 10.1002/mp.12218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aims to propose a physics-based method of reducing beam-hardening artifacts induced by high-attenuation materials such as metal stents or other metallic implants. METHODS The proposed approach consists of deriving a sinogram inconsistency formula representing the energy dependence of the attenuation coefficient of high-attenuation materials. This inconsistency formula more accurately represents the inconsistencies of the sinogram than that of a previously reported formula (called the MAC-BC method). This is achieved by considering the properties of the high-attenuation materials, which include the materials' shapes and locations and their effects on the incident X-ray spectrum, including their attenuation coefficients. RESULTS Numerical simulation and phantom experiment demonstrate that the modeling error of MAC-BC method are nearly completely removed by means of the proposed method. CONCLUSION The proposed method reduces beam-hardening artifacts arising from high-attenuation materials by relaxing the assumptions of the MAC-BC method. In doing so, it outperforms the original MAC-BC method. Further research is required to address other potential sources of metal artifacts, such as photon starvation, scattering, and noise.
Collapse
Affiliation(s)
- Sung Min Lee
- Department of Computational Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jin Keun Seo
- Department of Computational Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, 03722, Korea
| | - Jongduk Baek
- School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 406-840, Korea
| | - Hyoung Suk Park
- National Institute for Mathematical Sciences, Daejeon, 34047, Korea
| |
Collapse
|
35
|
Nam H, Baek J. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation. PLoS One 2017; 12:e0179022. [PMID: 28604794 PMCID: PMC5467844 DOI: 10.1371/journal.pone.0179022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects.
Collapse
Affiliation(s)
- Haewon Nam
- Department of Liberal Arts and Science, Hongik University, Sejong, South Korea
| | - Jongduk Baek
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, South Korea
- School of Integrated Technology, Yonsei University, Incheon, South Korea
- * E-mail:
| |
Collapse
|
36
|
Shi H, Yang Z, Luo S. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:417-428. [PMID: 28157119 DOI: 10.3233/xst-16187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. OBJECTIVE An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. METHODS According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. RESULTS Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. CONCLUSIONS Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.
Collapse
|
37
|
Jeon H, Park D, Youn H, Nam J, Lee J, Kim W, Ki Y, Kim YH, Lee JH, Kim D, Kim HK. Generation of hybrid sinograms for the recovery of kV-CT images with metal artifacts for helical tomotherapy. Med Phys 2016; 42:4654-67. [PMID: 26233193 DOI: 10.1118/1.4926552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The overall goal of this study is to restore kilovoltage computed tomography (kV-CT) images which are disfigured by patients' metal prostheses. By generating a hybrid sinogram that is a combination of kV and megavoltage (MV) projection data, the authors suggest a novel metal artifact-reduction (MAR) method that retains the image quality to match that of kV-CT and simultaneously restores the information of metal prostheses lost due to photon starvation. METHODS CT projection data contain information about attenuation coefficients and the total length of the attenuation. By normalizing raw kV projections with their own total lengths of attenuation, mean attenuation projections were obtained. In the same manner, mean density projections of MV-CT were obtained by the normalization of MV projections resulting from the forward projection of density-calibrated MV-CT images with the geometric parameters of the kV-CT device. To generate the hybrid sinogram, metal-affected signals of the kV sinogram were identified and replaced by the corresponding signals of the MV sinogram following a density calibration step with kV data. Filtered backprojection was implemented to reconstruct the hybrid CT image. To validate the authors' approach, they simulated four different scenarios for three heads and one pelvis using metallic rod inserts within a cylindrical phantom. Five inserts describing human body elements were also included in the phantom. The authors compared the image qualities among the kV, MV, and hybrid CT images by measuring the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), the densities of all inserts, and the spatial resolution. In addition, the MAR performance was compared among three existing MAR methods and the authors' hybrid method. Finally, for clinical trials, the authors produced hybrid images of three patients having dental metal prostheses to compare their MAR performances with those of the kV, MV, and three existing MAR methods. RESULTS The authors compared the image quality and MAR performance of the hybrid method with those of other imaging modalities and the three MAR methods, respectively. The total measured mean of the CNR (SNR) values for the nonmetal inserts was determined to be 14.3 (35.3), 15.3 (37.8), and 25.5 (64.3) for the kV, MV, and hybrid images, respectively, and the spatial resolutions of the hybrid images were similar to those of the kV images. The measured densities of the metal and nonmetal inserts in the hybrid images were in good agreement with their true densities, except in cases of extremely low densities, such as air and lung. Using the hybrid method, major streak artifacts were suitably removed and no secondary artifacts were introduced in the resultant image. In clinical trials, the authors verified that kV and MV projections were successfully combined and turned into the resultant hybrid image with high image contrast, accurate metal information, and few metal artifacts. The hybrid method also outperformed the three existing MAR methods with regard to metal information restoration and secondary artifact prevention. CONCLUSIONS The authors have shown that the hybrid method can restore the overall image quality of kV-CT disfigured by severe metal artifacts and restore the information of metal prostheses lost due to photon starvation. The hybrid images may allow for the improved delineation of structures of interest and accurate dose calculations for radiation treatment planning for patients with metal prostheses.
Collapse
Affiliation(s)
- Hosang Jeon
- Department of Radiation Oncology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, South Korea
| | - Dahl Park
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Hanbean Youn
- School of Mechanical Engineering, Pusan National University, Busan 609-735, South Korea
| | - Jiho Nam
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan 626-770, South Korea
| | - Jayoung Lee
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan 626-770, South Korea
| | - Wontaek Kim
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Yongkan Ki
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Yong Ho Kim
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Ju Hye Lee
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Dongwon Kim
- Department of Radiation Oncology, Pusan National University Hospital, Busan 602-739, South Korea
| | - Ho Kyung Kim
- School of Mechanical Engineering and the Center for Advanced Medical Engineering Research, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
38
|
Miki K, Mori S, Hasegawa A, Naganawa K, Koto M. Single-energy metal artefact reduction with CT for carbon-ion radiation therapy treatment planning. Br J Radiol 2016; 89:20150988. [PMID: 26942839 DOI: 10.1259/bjr.20150988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE One approach to improving image quality of CT is to use metal artefact reduction image processing, such as single-energy metal artefact reduction (SEMAR). To quantify the impact of image correction on the quality of carbon-ion dose distribution, treatment planning using SEMAR was evaluated. METHODS Using a head phantom into which metal screws could be inserted, we acquired standard planning CT images. We calculated dose distributions using phantom images with and without metal added, and with and without SEMAR. Hounsfield unit (HU) and dose distribution variation of these images with and without SEMAR were measured using metal-free image subtraction. We similarly analysed the image data sets of two patients with head and neck cancer who had dental implants. RESULTS HU difference between metal-containing images and metal-free images without and with SEMAR were -79.5 ± 97.2 HU and -1.4 ± 19.5 HU on severe artefact area, respectively. The range of dose distribution difference from the prescribed dose between uncorrected and SEMAR-corrected images varied from -19.5% to -3.4% within planning target volume (PTV). PTV-D95 (%) for uncorrected and SEMAR-corrected image data were 82.4% and 95.4%, respectively. For data in patients with metal dental work, PTV-D95 (%) for uncorrected and SEMAR-corrected data were 92.2% and 92.5% (Patient 1), and 90.9% and 95.7% (Patient 2), respectively. CONCLUSION SEMAR algorithm shows promise in improving CT image quality and in ensuring an accurate representation of dose distribution. ADVANCES IN KNOWLEDGE SEMAR may improve treatment accuracy without the need for dental implant extraction in patients with head and neck cancer.
Collapse
Affiliation(s)
- Kentaro Miki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Azusa Hasegawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Kensuke Naganawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Masashi Koto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
39
|
Abdoli M, Mehranian A, Ailianou A, Becker M, Zaidi H. Assessment of metal artifact reduction methods in pelvic CT. Med Phys 2016; 43:1588. [DOI: 10.1118/1.4942810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Park HS, Hwang D, Seo JK. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:480-487. [PMID: 26390451 DOI: 10.1109/tmi.2015.2478905] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts.
Collapse
|
41
|
Park HS, Chung YE, Seo JK. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0388. [PMID: 25939628 PMCID: PMC4424484 DOI: 10.1098/rsta.2014.0388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 05/30/2023]
Abstract
This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis.
Collapse
Affiliation(s)
- Hyoung Suk Park
- Department of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Keun Seo
- Department of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Kwon H, Kim KS, Chun YM, Wu HG, Carlson JNK, Park JM, Kim JI. Evaluation of a commercial orthopaedic metal artefact reduction tool in radiation therapy of patients with head and neck cancer. Br J Radiol 2015; 88:20140536. [PMID: 25993487 DOI: 10.1259/bjr.20140536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the image quality and dosimetric effects of the Philips orthopaedic metal artefact reduction (OMAR) (Philips Healthcare System, Cleveland, OH) function for reducing metal artefacts on CT images of head and neck (H&N) patients. METHODS 11 patients and a custom-built phantom with metal bead inserts (alumina, titanium, zirconia and chrome) were scanned. The image was reconstructed in two ways: with and without OMAR (OMAR and non-OMAR image). The mean and standard deviation values of CT Hounsfield unit (HU) for selected regions of interest of each case were investigated for both images. Volumetric modulated arc therapy plans were generated for all cases. Gamma analysis of each dose distribution pair in the patient (1%/1 mm criteria) and phantom (2%/2 mm and 3%/3 mm criteria) images was performed. The film measurements in phantom for two metal beads were conducted for evaluating the calculated dose on both OMAR and non-OMAR images. RESULTS In the OMAR images, noise values were generally reduced, and the mean HU became closer to the reference value (measured from patients without metal implants) in both patient and phantom cases. Although dosimetric difference was insignificant for the eight closed-mouth patients (γ = 99.4 ± 0.5%), there was a large discrepancy in dosimetric calculation between OMAR and non-OMAR images for the three opened-mouth patients (γ = 91.1%, 94.8% and 96.6%). Moreover, the calculated dose on the OMAR image is closer to the real delivered dose on a radiochromic film than was the dose from the non-OMAR image. CONCLUSION The OMAR algorithm increases the accuracy of CT HU and reduces the noise such that the entire radiation treatment planning process can be improved, especially for contouring and segmentation. ADVANCES IN KNOWLEDGE OMAR reconstruction is appropriate for the radiotherapy planning process of H&N patients, particularly of patients who use a bite block.
Collapse
Affiliation(s)
- H Kwon
- 1 Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea.,2 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,3 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - K S Kim
- 4 Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,5 Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y M Chun
- 6 Philips Healthcare Korea, Seoul, Republic of Korea
| | - H-G Wu
- 3 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,4 Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,5 Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J N K Carlson
- 2 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,3 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,7 Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon, Republic of Korea
| | - J M Park
- 1 Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea.,2 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,3 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,8 Center for Convergence Research on Robotics, Advance Institutes of Convergence Technology, Suwon, Republic of Korea
| | - J-I Kim
- 1 Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Republic of Korea.,2 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,3 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,8 Center for Convergence Research on Robotics, Advance Institutes of Convergence Technology, Suwon, Republic of Korea
| |
Collapse
|
43
|
Wu M, Keil A, Constantin D, Star-Lack J, Zhu L, Fahrig R. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging. Med Phys 2014; 41:121910. [PMID: 25471970 PMCID: PMC4290750 DOI: 10.1118/1.4901551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. METHODS Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. RESULTS The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10-15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%-10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. CONCLUSIONS The authors have shown that it is possible to improve the image quality of kV CTs for patients with metal implants or fillings by completing the missing kV projection data with selectively acquired MV data that do not suffer from photon starvation. Numerical simulations demonstrated that dual-energy sinogram patch FBP and a modified kV/MV PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in kV projections. Combined kV/MV images may permit the improved delineation of structures of interest in CT images for patients with metal implants or fillings.
Collapse
Affiliation(s)
- Meng Wu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | | | | | - Josh Star-Lack
- Varian Medical Systems, Inc., Palo Alto, California 94304
| | - Lei Zhu
- Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rebecca Fahrig
- Department of Radiology, Stanford University, Stanford, California 94305
| |
Collapse
|
44
|
The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study. Ann Nucl Med 2014; 28:540-50. [PMID: 24710757 DOI: 10.1007/s12149-014-0844-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. METHODS A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. RESULTS Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. CONCLUSIONS MAR combined with a trilinear CT number mapping for PET attenuation correction resulted in estimates of lesion activity comparable in accuracy to that obtained with (137)Cs transmission-based attenuation correction, and far superior to estimates made without attenuation correction or with a standard CT attenuation map. The ability to use CT images for attenuation correction is a potentially important development because it obviates the need for a (137)Cs transmission source, which entails extra scan time, logistical complexity and expense.
Collapse
|