1
|
Sun Y, Li Y, Zhang F, Zhao H, Liu H, Wang N, Li H. A deep network using coarse clinical prior for myopic maculopathy grading. Comput Biol Med 2023; 154:106556. [PMID: 36682177 DOI: 10.1016/j.compbiomed.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Pathological Myopia (PM) is a globally prevalent eye disease which is one of the main causes of blindness. In the long-term clinical observation, myopic maculopathy is a main criterion to diagnose PM severity. The grading of myopic maculopathy can provide a severity and progression prediction of PM to perform treatment and prevent myopia blindness in time. In this paper, we propose a feature fusion framework to utilize tessellated fundus and the brightest region in fundus images as prior knowledge. The proposed framework consists of prior knowledge extraction module and feature fusion module. Prior knowledge extraction module uses traditional image processing methods to extract the prior knowledge to indicate coarse lesion positions in fundus images. Furthermore, the prior, tessellated fundus and the brightest region in fundus images, are integrated into deep learning network as global and local constrains respectively by feature fusion module. In addition, rank loss is designed to increase the continuity of classification score. We collect a private color fundus dataset from Beijing TongRen Hospital containing 714 clinical images. The dataset contains all 5 grades of myopic maculopathy which are labeled by experienced ophthalmologists. Our framework achieves 0.8921 five-grade accuracy on our private dataset. Pathological Myopia (PALM) dataset is used for comparison with other related algorithms. Our framework is trained with 400 images and achieves an AUC of 0.9981 for two-class grading. The results show that our framework can achieve a good performance for myopic maculopathy grading.
Collapse
Affiliation(s)
- Yun Sun
- Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China
| | - Yu Li
- Beijing Tongren Hospital, Capital Medical University, No. 2, Chongwenmennei Street, Beijing, 100730, China
| | - Fengju Zhang
- Beijing Tongren Hospital, Capital Medical University, No. 2, Chongwenmennei Street, Beijing, 100730, China
| | - He Zhao
- Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China.
| | - Hanruo Liu
- Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China; Beijing Tongren Hospital, Capital Medical University, No. 2, Chongwenmennei Street, Beijing, 100730, China
| | - Ningli Wang
- Beijing Tongren Hospital, Capital Medical University, No. 2, Chongwenmennei Street, Beijing, 100730, China
| | - Huiqi Li
- Beijing Institute of Technology, No. 5, Zhong Guan Cun South Street, Beijing, 100081, China.
| |
Collapse
|
2
|
Chen X, You S, Tezcan KC, Konukoglu E. Unsupervised lesion detection via image restoration with a normative prior. Med Image Anal 2020; 64:101713. [PMID: 32492582 DOI: 10.1016/j.media.2020.101713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Unsupervised lesion detection is a challenging problem that requires accurately estimating normative distributions of healthy anatomy and detecting lesions as outliers without training examples. Recently, this problem has received increased attention from the research community following the advances in unsupervised learning with deep learning. Such advances allow the estimation of high-dimensional distributions, such as normative distributions, with higher accuracy than previous methods. The main approach of the recently proposed methods is to learn a latent-variable model parameterized with networks to approximate the normative distribution using example images showing healthy anatomy, perform prior-projection, i.e. reconstruct the image with lesions using the latent-variable model, and determine lesions based on the differences between the reconstructed and original images. While being promising, the prior-projection step often leads to a large number of false positives. In this work, we approach unsupervised lesion detection as an image restoration problem and propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation. The probabilistic model punishes large deviations between restored and original images, reducing false positives in pixel-wise detections. Experiments with gliomas and stroke lesions in brain MRI using publicly available datasets show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin, +0.13 (AUC), for both glioma and stroke detection. Extensive model analysis confirms the effectiveness of MAP-based image restoration.
Collapse
Affiliation(s)
- Xiaoran Chen
- Computer Vision Laboratory, ETH Zürich, Sternwartstrasse 7, Zürich, 8092, Switzerland.
| | - Suhang You
- ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern, 3008, Switzerland.
| | - Kerem Can Tezcan
- Computer Vision Laboratory, ETH Zürich, Sternwartstrasse 7, Zürich, 8092, Switzerland.
| | - Ender Konukoglu
- Computer Vision Laboratory, ETH Zürich, Sternwartstrasse 7, Zürich, 8092, Switzerland.
| |
Collapse
|