1
|
Aphiwatthanasumet K, Jethwa K, Glover P, O'Donoghue G, Auer D, Gowland P. Morphology of the human inner ear and vestibulocochlear nerve assessed using 7 T MRI. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01213-3. [PMID: 39535680 DOI: 10.1007/s10334-024-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo. MATERIALS AND METHODS Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC). RESULTS 3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm2. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm2. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81). CONCLUSION 7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.
Collapse
Affiliation(s)
- Kingkarn Aphiwatthanasumet
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand.
| | - Ketan Jethwa
- Department of Radiology, Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Gerard O'Donoghue
- Department of Otolaryngology, Head and Neck Surgery, University of Nottingham, Nottingham, UK
| | - Dorothee Auer
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Schoen N, Seifert F, Petzold J, Metzger GJ, Speck O, Ittermann B, Schmitter S. The Impact of Respiratory Motion on Electromagnetic Fields and Specific Absorption Rate in Cardiac Imaging at 7T. Magn Reson Med 2022; 88:2645-2661. [PMID: 35906923 DOI: 10.1002/mrm.29402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.
Collapse
Affiliation(s)
- Natalie Schoen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver Speck
- Otto von Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:875-894. [PMID: 35471464 PMCID: PMC9596558 DOI: 10.1007/s10334-022-01007-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
AbstractThis article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.
Collapse
|
4
|
A perturbation approach for ultrafast calculation of RF field enhancements near medical implants in MRI. Sci Rep 2022; 12:4224. [PMID: 35273313 PMCID: PMC8913743 DOI: 10.1038/s41598-022-08004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with medical implants often are deprived of magnetic resonance imaging examination because of safety risks. One specific risk is the enhancement of the radiofrequency fields around the medical implant potentially resulting in significant tissue heating and damage. The assessment of this enhancement is a computationally demanding task, with simulations taking hours or days to converge. Conventionally the source of the radiofrequency fields, patient anatomy, and the medical implant are simulated concurrently. To alleviate the computational burden, we reformulate a fast simulation method that views the medical implant as a small perturbation of the simulation domain without the medical implant and calculates the radiofrequency fields associated with this perturbation. Previously, this method required an extensive offline stage where the result is intractable for large simulation domains. Currently, this offline stage is no longer required and the method is completely online. The proposed method results in comparable radiofrequency fields but is orders of magnitude faster compared to standard simulation technique; the finite-difference time-domain, the finite-sums, and the finite element methods. This acceleration could enable patient-specific and potentially online radiofrequency safety assessment.
Collapse
|
5
|
Improvement of magnetic resonance imaging using a wireless radiofrequency resonator array. Sci Rep 2021; 11:23034. [PMID: 34845314 PMCID: PMC8630230 DOI: 10.1038/s41598-021-02533-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, new human magnetic resonance imaging systems operating at static magnetic fields strengths of 7 Tesla or higher have become available, providing better signal sensitivity compared with lower field strengths. However, imaging human-sized objects at such high field strength and associated precession frequencies is limited due to the technical challenges associated with the wavelength effect, which substantially disturb the transmit field uniformity over the human body when conventional coils are used. Here we report a novel passive inductively-coupled radiofrequency resonator array design with a simple structure that works in conjunction with conventional coils and requires only to be tuned to the scanner's operating frequency. We show that inductive-coupling between the resonator array and the coil improves the transmit efficiency and signal sensitivity in the targeted region. The simple structure, flexibility, and cost-efficiency make the proposed array design an attractive approach for altering the transmit field distribution specially at high field systems, where the wavelength is comparable with the tissue size.
Collapse
|
6
|
Stijnman PRS, Erturk MA, van den Berg CAT, Raaijmakers AJE. A single setup approach for the MRI-based measurement and validation of the transfer function of elongated medical implants. Magn Reson Med 2021; 86:2751-2765. [PMID: 34036617 PMCID: PMC8596675 DOI: 10.1002/mrm.28840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To propose a single setup using the MRI to both measure and validate the transfer function (TF) of linear implants. Conventionally, the TF of an implant is measured in one bench setup and validated using another. METHODS It has been shown that the TF can be measured using MRI. To validate this measurement, the implant is exposed to different incident electric fields, while the temperature increase at the tip is monitored. For a good validation, the incident electric fields that the implant is exposed to should be orthogonal. We perform a simulation study on six different methods that change the incident electric field. Afterward, a TF measurement and validation study using the best method from the simulations is performed. This is done with fiberoptic temperature probes at 1.5 T for four linear implant structures using the proposed single setup. RESULTS The simulation study showed that positioning local transmit coils at different locations along the lead trajectory has a similar validation quality compared with changing the implant trajectory (ie, the conventional validation method). For the validation study that was performed, an R2 ≥ 0.91 was found for the four investigated leads. CONCLUSION A single setup to both measure and validate the transfer function using local transmit coils has been shown to work. The benefits of using the proposed validation method are that there is only one setup required instead of two and the implant trajectory is not varied; therefore, the relative distance between the leap tip and the temperature probe is constant.
Collapse
Affiliation(s)
- Peter R. S. Stijnman
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven, Brabantthe Netherlands
| | - M. Arcan Erturk
- Restorative Therapies Group, Implantables R&D, Medtronic PLCMinneapolisMinnesotaUSA
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
| | - Alexander J. E. Raaijmakers
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven, Brabantthe Netherlands
| |
Collapse
|
7
|
Gandji NP, Sica CT, Lanagan MT, Woo MK, DelaBarre L, Radder J, Zhang B, Lattanzi R, Adriany G, Ugurbil K, Yang QX. Displacement current distribution on a high dielectric constant helmet and its effect on RF field at 10.5 T (447 MHz). Magn Reson Med 2021; 86:3292-3303. [PMID: 34272898 DOI: 10.1002/mrm.28923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Investigating the designs and effects of high dielectric constant (HDC) materials in the shape of a conformal helmet on the enhancement of RF field and reduction of specific absorption rate at 10.5 T for human brain studies. METHODS A continuous and a segmented four-piece HDC helmet fit to a human head inside an eight-channel fractionated-dipole array were constructed and studied with a phantom and a human head model using computer electromagnetic simulations. The simulated transmit efficiency and receive sensitivity were experimentally validated using a phantom with identical electric properties and helmet-coil configurations of the computer model. The temporal and spatial distributions of displacement currents on the HDC helmets were analyzed. RESULTS Using the continuous HDC helmet, simulation results in the human head model demonstrated an average transmit efficiency enhancement of 66%. A propagating displacement current was induced on the continuous helmet, leading to an inhomogeneous RF field enhancement in the brain. Using the segmented four-piece helmet design to reduce this effect, an average 55% and 57% enhancement in the transmit efficiency and SNR was achieved in human head, respectively, along with 8% and 28% reductions in average and maximum local specific absorption rate. CONCLUSION The HDC helmets enhanced the transmit efficiency and SNR of the dipole array coil in the human head at 10.5 T. The segmentation of the helmet to disrupt the continuity of circumscribing displacement currents in the helmet produced a more uniform distribution of the transmit field and lower specific absorption rate in the human head compared with the continuous helmet design.
Collapse
Affiliation(s)
- Navid P Gandji
- Center for NMR Research, Departments of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Christopher T Sica
- Center for NMR Research, Departments of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, Pennsylvania, USA
| | - Myung-Kyun Woo
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bei Zhang
- UT Southwestern Medical Center, Advance Imaging Research Center, Dallas, Texas, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qing X Yang
- Center for NMR Research, Departments of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Stijnman PRS, Tokaya JP, van Gemert J, Luijten PR, Pluim JPW, Brink WM, Remis RF, van den Berg CAT, Raaijmakers AJE. Accelerating implant RF safety assessment using a low-rank inverse update method. Magn Reson Med 2019; 83:1796-1809. [PMID: 31566265 PMCID: PMC7003873 DOI: 10.1002/mrm.28023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
Purpose Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant. Methods In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries. Results From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation. Conclusions The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.
Collapse
Affiliation(s)
- Peter R S Stijnman
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Janot P Tokaya
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands
| | - Jeroen van Gemert
- Circuit & Systems Group of the Electrical Engineering, Delft University of Technology, Delft, The Netherlands.,C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter R Luijten
- Department of Radiology, UMC Utrecht, Utrecht, The Netherlands
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wyger M Brink
- C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F Remis
- Circuit & Systems Group of the Electrical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Cornelis A T van den Berg
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
van Gemert J, Brink W, Remis R, Webb A. A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3T. Magn Reson Med 2019; 82:1822-1831. [PMID: 31199014 PMCID: PMC6771485 DOI: 10.1002/mrm.27849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE One of the main concerns in fetal MRI is the radiofrequency power that is absorbed both by the mother and the fetus. Passive shimming using high permittivity materials in the form of "dielectric pads" has previously been shown to increase the B 1 + efficiency and homogeneity in different applications, while reducing the specific absorption rate (SAR). In this work, we study the effect of optimized dielectric pads for 3 pregnant models. METHODS Pregnant models in the 3rd, 7th, and 9th months of gestation were used for simulations in a birdcage coil at 3T. Dielectric pads were optimized regions of interest (ROI) using previously developed methods for B 1 + efficiency and homogeneity and were designed for 2 ROIs: the entire fetus and the brain of the fetus. The SAR was evaluated in terms of the whole-body SAR, average SAR in the fetus and amniotic fluid, and maximum 10 g-averaged SAR in the mother, fetus, and amniotic fluid. RESULTS The optimized dielectric pads increased the transmit efficiency up to 55% and increased the B 1 + homogeneity in almost every tested configuration. The B 1 + -normalized whole-body SAR was reduced by more than 31% for all body models. The B 1 + -normalized local SAR was reduced in most scenarios by up to 62%. CONCLUSION Simulations have shown that optimized high permittivity pads can reduce SAR in pregnant subjects at the 3rd, 7th, and 9th month of gestation, while improving the transmit field homogeneity in the fetus. However, significantly more work is required to demonstrate that fetal imaging is safe under standard operating conditions.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| | - Rob Remis
- Circuits & Systems Group, Electrical Engineering, Mathematics and Computer Science Faculty, Delft University of Technology, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, The Netherlands
| |
Collapse
|
10
|
van Gemert J, Brink W, Webb A, Remis R. High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magn Reson Med 2018; 81:3370-3378. [PMID: 30561797 PMCID: PMC6519234 DOI: 10.1002/mrm.27629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/18/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022]
Abstract
Purpose High‐permittivity materials in the form of flexible “dielectric pads” have proved very useful for addressing RF inhomogeneities in high field MRI systems. Finding the optimal design of such pads is, however, a tedious task, reducing the impact of this technique. We present an easy‐to‐use software tool which allows researchers and clinicians to design dielectric pads efficiently on standard computer systems, for 7T neuroimaging and 3T body imaging applications. Methods The tool incorporates advanced computational methods based on field decomposition and model order reduction as a framework to efficiently evaluate the B1+ fields resulting from dielectric pads. The tool further incorporates optimization routines which can either optimize the position of a given dielectric pad, or perform a full parametric design. The optimization procedure can target either a single target field, or perform a sweep to explore the trade‐off between homogeneity and efficiency of the B1+ field in a specific region of interest. The 3T version further allows for shifting of the imaging landmark to enable different imaging targets to be centered in the body coil. Results Example design results are shown for imaging the inner ear at 7T and for cardiac imaging at 3T. Computation times for all cases are approximately a minute per target field. Conclusion The developed tool can be easily used to design dielectric pads for any 7T neuroimaging and 3T body imaging application within minutes. This bridges the gap between the advanced design methods and the practical application by the MR community.
Collapse
Affiliation(s)
- Jeroen van Gemert
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Wyger Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Circuits & Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Rob Remis
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
van Gemert JHF, Brink WM, Webb AG, Remis RF. High-Permittivity Pad Design for Dielectric Shimming in Magnetic Resonance Imaging Using Projection-Based Model Reduction and a Nonlinear Optimization Scheme. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1035-1044. [PMID: 29610080 DOI: 10.1109/tmi.2018.2791179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhomogeneities in the transmit radio frequency magnetic field ( ) reduce the quality of magnetic resonance (MR) images. This quality can be improved by using high-permittivity pads that tailor the fields. The design of an optimal pad is application-specific and not straightforward and would therefore benefit from a systematic optimization approach. In this paper, we propose such a method to efficiently design dielectric pads. To this end, a projection-based model order reduction technique is used that significantly decreases the dimension of the design problem. Subsequently, the resulting reduced-order model is incorporated in an optimization method in which a desired field in a region of interest can be set. The method is validated by designing a pad for imaging the cerebellum at 7 T. The optimal pad that is found is used in an MR measurement to demonstrate its effectiveness in improving the image quality.
Collapse
|
12
|
Souza EMD, Costa ET, Castellano G. Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives. ACTA ACUST UNITED AC 2017. [DOI: 10.1590/2446-4740.07816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Gabriela Castellano
- University of Campinas, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Brazil
| |
Collapse
|