1
|
Goh Y, Balasundaram G, Tan HM, Putti TC, Bi R, Hartman M, Buhari SA, Ng CWQ, Lui SA, Goh SSN, Leong WQ, Fang E, Quek ST, Olivo M. Utility of photoacoustic patterns in intra-operative margin assessment of breast cancer post neoadjuvant chemotherapy. PHOTOACOUSTICS 2025; 43:100701. [PMID: 40177367 PMCID: PMC11964573 DOI: 10.1016/j.pacs.2025.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025]
Abstract
Purpose To evaluate the feasibility and accuracy of ultrasound-guided photoacoustic tomography (US-PA) for intraoperative margin assessment in breast-conserving surgery (BCS) following neoadjuvant chemotherapy (NACT). Methods This study, approved by the local Institutional Review Board, included 21 women with histologically confirmed breast cancer referred for BCS post-NACT. Data from 4 participants were used for training while 17 participants were analyzed. US-PA imaging was performed using the MSOT inVision 512-ECHO system, capturing chromophores like lipids, collagen, and hemoglobin up to a 5 mm depth. Imaging results were compared to histopathological findings, and diagnostic accuracy was calculated. Results US-PA imaging demonstrated a high diagnostic accuracy of 89.0 %, with a sensitivity and negative predictive value (NPV) of 100 %, specificity of 86.9 %, and positive predictive value (PPV) of 59.4 %. Excellent inter-observer agreement (kappa = 1) was observed. No laser-induced tissue damage was noted. The average scan time per specimen was approximately 20 minutes. False positives (n = 11) were primarily due to post-therapy fibrotic changes and extremely close tumor extensions (<2 mm). Conclusion US-PA provided clear visualization of tissue components, accurately correlating with histopathology. The method's high NPV minimizes the risk of re-operations and locoregional recurrence. Although the PPV was lower, it did not impact clinical management as surgeons typically excise wider margins in such cases. The study highlighted US-PA's potential as a promising tool for intraoperative margin assessment in BCS post-NACT, offering a rapid, accurate, and safe method. Further studies with larger sample sizes are needed to confirm these findings and enhance quantitative assessment methods.
Collapse
Affiliation(s)
- Yonggeng Goh
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Ghayathri Balasundaram
- A⁎STAR Skin Research Labs, Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, #07-01, Nanos 138669, Singapore
| | - Hui Min Tan
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Renzhe Bi
- A⁎STAR Skin Research Labs, Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, #07-01, Nanos 138669, Singapore
| | - Mikael Hartman
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Shaik Ahmad Buhari
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Celene Wei Qi Ng
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Su Ann Lui
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Serene Si Ning Goh
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Wei Qi Leong
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Eric Fang
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Malini Olivo
- A⁎STAR Skin Research Labs, Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, #07-01, Nanos 138669, Singapore
| |
Collapse
|
2
|
Zhong Y, Liu Z, Zhang X, Liang Z, Chen W, Dai C, Qi L. Unsupervised adversarial neural network for enhancing vasculature in photoacoustic tomography images using optical coherence tomography angiography. Comput Med Imaging Graph 2024; 117:102425. [PMID: 39216343 DOI: 10.1016/j.compmedimag.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Photoacoustic tomography (PAT) is a powerful imaging modality for visualizing tissue physiology and exogenous contrast agents. However, PAT faces challenges in visualizing deep-seated vascular structures due to light scattering, absorption, and reduced signal intensity with depth. Optical coherence tomography angiography (OCTA) offers high-contrast visualization of vasculature networks, yet its imaging depth is limited to a millimeter scale. Herein, we propose OCPA-Net, a novel unsupervised deep learning method that utilizes the rich vascular feature of OCTA to enhance PAT images. Trained on unpaired OCTA and PAT images, OCPA-Net incorporates a vessel-aware attention module to enhance deep-seated vessel details captured from OCTA. It leverages a domain-adversarial loss function to enforce structural consistency and a novel identity invariant loss to mitigate excessive image content generation. We validate the structural fidelity of OCPA-Net on simulation experiments, and then demonstrate its vascular enhancement performance on in vivo imaging experiments of tumor-bearing mice and contrast-enhanced pregnant mice. The results show the promise of our method for comprehensive vessel-related image analysis in preclinical research applications.
Collapse
Affiliation(s)
- Yutian Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyang Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China; Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiaoming Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoyong Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China
| | - Cuixia Dai
- College of Science, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Goh Y, Balasundaram G, Tan HM, Putti TC, Renzhe B, Hartman M, Buhari SA, Ng CWQ, Lui SA, Fang E, Quek ST, Olivo M. Ultrasound-guided photoacoustic (US-PA) tomography of the breast: Biochemical differentiation using intrinsic tissue markers-lipids, collagen and hemoglobin with histopathologic correlation. Sci Rep 2024; 14:18054. [PMID: 39103361 PMCID: PMC11300771 DOI: 10.1038/s41598-024-65114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
In this pilot study, we investigated the utility of handheld ultrasound-guided photoacoustic (US-PA) imaging probe for analyzing ex-vivo breast specimens obtained from female patients who underwent breast-conserving surgery (BCS). We aimed to assess the potential of US-PA in detecting biochemical markers such as collagen, lipids, and hemoglobin, and compare these findings with routine imaging modalities (mammography, ultrasound) and histopathology results, particularly across various breast densities. Twelve ex-vivo breast specimens were obtained from female patients with a mean age of 59.7 ± 9.5 years who underwent BCS. The tissues were illuminated using handheld US-PA probe between 700 and 1100 nm across all margins and analyzed for collagen, lipids, and hemoglobin distribution. The obtained results were compared with routine imaging and histopathological assessments. Our findings revealed that lipid intensity and distribution decreased with increasing breast density, while collagen exhibited an opposite trend. These observations were consistent with routine imaging and histopathological analyses. Moreover, collagen intensity significantly differed (P < 0.001) between cancerous and normal breast tissue, indicating its potential as an additional biomarker for risk stratification across various breast conditions. The study results suggest that a combined assessment of PA biochemical information, such as collagen and lipid content, superimposed on grey-scale ultrasound findings could aid in distinguishing between normal and malignant breast conditions, as well as assist in BCS margin assessment. This underscores the potential of US-PA imaging as a valuable tool for enhancing breast cancer diagnosis and management, offering complementary information to existing imaging modalities and histopathology.
Collapse
Affiliation(s)
- Yonggeng Goh
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Ghayathri Balasundaram
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology & Research (A*STAR), 31 Biopolis Way, 07-01, Nanos, Singapore, 138669, Singapore
| | - Hui Min Tan
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Bi Renzhe
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology & Research (A*STAR), 31 Biopolis Way, 07-01, Nanos, Singapore, 138669, Singapore
| | - Mikael Hartman
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Shaik Ahmad Buhari
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Celene Wei Qi Ng
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Su Ann Lui
- Department of Breast Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Eric Fang
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore.
| | - Malini Olivo
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology & Research (A*STAR), 31 Biopolis Way, 07-01, Nanos, Singapore, 138669, Singapore.
| |
Collapse
|
4
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
5
|
Noversa de Sousa R, Tascilar K, Corte G, Atzinger A, Minopoulou I, Ohrndorf S, Waldner M, Schmidkonz C, Kuwert T, Knieling F, Kleyer A, Ramming A, Schett G, Simon D, Fagni F. Metabolic and molecular imaging in inflammatory arthritis. RMD Open 2024; 10:e003880. [PMID: 38341194 PMCID: PMC10862311 DOI: 10.1136/rmdopen-2023-003880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
It is known that metabolic shifts and tissue remodelling precede the development of visible inflammation and structural organ damage in inflammatory rheumatic diseases such as the inflammatory arthritides. As such, visualising and measuring metabolic tissue activity could be useful to identify biomarkers of disease activity already in a very early phase. Recent advances in imaging have led to the development of so-called 'metabolic imaging' tools that can detect these changes in metabolism in an increasingly accurate manner and non-invasively.Nuclear imaging techniques such as 18F-D-glucose and fibroblast activation protein inhibitor-labelled positron emission tomography are increasingly used and have yielded impressing results in the visualisation (including whole-body staging) of inflammatory changes in both early and established arthritis. Furthermore, optical imaging-based bedside techniques such as multispectral optoacoustic tomography and fluorescence optical imaging are advancing our understanding of arthritis by identifying intra-articular metabolic changes that correlate with the onset of inflammation with high precision and without the need of ionising radiation.Metabolic imaging holds great potential for improving the management of patients with inflammatory arthritis by contributing to early disease interception and improving diagnostic accuracy, thereby paving the way for a more personalised approach to therapy strategies including preventive strategies. In this narrative review, we discuss state-of-the-art metabolic imaging methods used in the assessment of arthritis and inflammation, and we advocate for more extensive research endeavours to elucidate their full field of application in rheumatology.
Collapse
Affiliation(s)
- Rita Noversa de Sousa
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Serviço de Medicina Interna, Hospital Pedro Hispano, Matosinhos, Portugal
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Giulia Corte
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Waldner
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Institute for Medical Engineering, Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Susmelj AK, Lafci B, Ozdemir F, Davoudi N, Deán-Ben XL, Perez-Cruz F, Razansky D. Signal domain adaptation network for limited-view optoacoustic tomography. Med Image Anal 2024; 91:103012. [PMID: 37922769 DOI: 10.1016/j.media.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Optoacoustic (OA) imaging is based on optical excitation of biological tissues with nanosecond-duration laser pulses and detection of ultrasound (US) waves generated by thermoelastic expansion following light absorption. The image quality and fidelity of OA images critically depend on the extent of tomographic coverage provided by the US detector arrays. However, full tomographic coverage is not always possible due to experimental constraints. One major challenge concerns an efficient integration between OA and pulse-echo US measurements using the same transducer array. A common approach toward the hybridization consists in using standard linear transducer arrays, which readily results in arc-type artifacts and distorted shapes in OA images due to the limited angular coverage. Deep learning methods have been proposed to mitigate limited-view artifacts in OA reconstructions by mapping artifactual to artifact-free (ground truth) images. However, acquisition of ground truth data with full angular coverage is not always possible, particularly when using handheld probes in a clinical setting. Deep learning methods operating in the image domain are then commonly based on networks trained on simulated data. This approach is yet incapable of transferring the learned features between two domains, which results in poor performance on experimental data. Here, we propose a signal domain adaptation network (SDAN) consisting of i) a domain adaptation network to reduce the domain gap between simulated and experimental signals and ii) a sides prediction network to complement the missing signals in limited-view OA datasets acquired from a human forearm by means of a handheld linear transducer array. The proposed method showed improved performance in reducing limited-view artifacts without the need for ground truth signals from full tomographic acquisitions.
Collapse
Affiliation(s)
| | - Berkan Lafci
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Firat Ozdemir
- Swiss Data Science Center, ETH Zürich and EPFL, Switzerland
| | - Neda Davoudi
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland
| | - Fernando Perez-Cruz
- Swiss Data Science Center, ETH Zürich and EPFL, Switzerland; Institute for Machine Learning, Department of Computer Science, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland; Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Switzerland.
| |
Collapse
|
7
|
Qiu T, Yang J, Peng C, Xiang H, Huang L, Ling W, Luo Y. Diagnosis of liver fibrosis and liver function reserve through non-invasive multispectral photoacoustic imaging. PHOTOACOUSTICS 2023; 33:100562. [PMID: 38021289 PMCID: PMC10658630 DOI: 10.1016/j.pacs.2023.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Liver function reserve (LFR) is the sum of remnant functional hepatic cells after liver injury. In the pathologic process of liver fibrosis (LF), LFR is impaired. LFR assessment can help determine the safe scope of liver resection or drug regimen and predict prognosis of patients with liver disease. Here, we used a photoacoustic imaging (PAI) system to assess LF and LFR in rabbit models. We performed PAI, ultrasound elastography and biopsy for 21 rabbits developing none (n = 6) and LF (n = 15). In vivo indocyanine green (ICG) measurements by PAI showed that LF group presented a significantly attenuated ICG clearance compared to control group, indicating LFR impairment of LF. Another finding was a significantly higher collagen photoacoustic signal intensity value was observed in LF both in vivo and in vitro. Our findings demonstrated that PAI was potentially effective to evaluate LFR and collagen accumulation of LF.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chihan Peng
- Department of Ultrasound, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Hongjin Xiang
- Department of Ultrasound, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone District, Chengdu 611731, China
| | - Wenwu Ling
- Department of Ultrasound, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
8
|
Paulus L, Buehler A, Wagner AL, Raming R, Jüngert J, Simon D, Tascilar K, Schnell A, Rother U, Eckstein M, Lang W, Hoerning A, Schett G, Neurath MF, Waldner MJ, Trollmann R, Woelfle J, Bohndiek SE, Regensburger AP, Knieling F. Contrast-Enhanced Multispectral Optoacoustic Tomography for Functional Assessment of the Gastrointestinal Tract. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302562. [PMID: 37289088 PMCID: PMC10427354 DOI: 10.1002/advs.202302562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Real-time imaging and functional assessment of the intestinal tract and its transit pose a significant challenge to conventional clinical diagnostic methods. Multispectral optoacoustic tomography (MSOT), a molecular-sensitive imaging technology, offers the potential to visualize endogenous and exogenous chromophores in deep tissue. Herein, a novel approach using the orally administered clinical-approved fluorescent dye indocyanine green (ICG) for bedside, non-ionizing evaluation of gastrointestinal passage is presented. The authors are able to show the detectability and stability of ICG in phantom experiments. Furthermore, ten healthy subjects underwent MSOT imaging at multiple time points over eight hours after ingestion of a standardized meal with and without ICG. ICG signals can be visualized and quantified in different intestinal segments, while its excretion is confirmed by fluorescent imaging of stool samples. These findings indicate that contrast-enhanced MSOT (CE-MSOT) provides a translatable real-time imaging approach for functional assessment of the gastrointestinal tract.
Collapse
Affiliation(s)
- Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Alexandra L. Wagner
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Department of Pediatric Neurology, Center for Chronically Sick ChildrenCharité BerlinBerlinGermany
| | - Roman Raming
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - David Simon
- Department of Medicine 3, University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Koray Tascilar
- Department of Medicine 3, University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Alexander Schnell
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Insitute of PathologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Werner Lang
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - André Hoerning
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Georg Schett
- Department of Medicine 3, University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- German Center Immunotherapy (DZI)University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus F. Neurath
- German Center Immunotherapy (DZI)University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- German Center Immunotherapy (DZI)University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E Bohndiek
- Department of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
- Pediatric Experimental and Translational Imaging Laboratory (PETI‐Lab)Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
9
|
Jin G, Zhu H, Jiang D, Li J, Su L, Li J, Gao F, Cai X. A Signal-Domain Object Segmentation Method for Ultrasound and Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:253-265. [PMID: 37015663 DOI: 10.1109/tuffc.2022.3232174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Image segmentation is important in improving the diagnostic capability of ultrasound computed tomography (USCT) and photoacoustic computed tomography (PACT), as it can be included in the image reconstruction process to improve image quality and quantification abilities. Segmenting the imaged object out of the background using image domain methods is easily complicated by low contrast, noise, and artifacts in the reconstructed image. Here, we introduce a new signal domain object segmentation method for USCT and PACT which does not require image reconstruction beforehand and is automatic, robust, computationally efficient, accurate, and straightforward. We first establish the relationship between the time-of-flight (TOF) of the received first arrival waves and the object's boundary which is described by ellipse equations. Then, we show that the ellipses are tangent to the boundary. By looking for tangent points on the common tangent of neighboring ellipses, the boundary can be approximated with high fidelity. Imaging experiments of human fingers and mice cross sections showed that our method provided equivalent or better segmentations than the optimal ones by active contours. In summary, our method greatly reduces the overall complexity of object segmentation and shows great potential in eliminating user dependency without sacrificing segmentation accuracy. The method can be further seamlessly incorporated into algorithms for other processing purposes in USCT and PACT, such as high-quality image reconstruction.
Collapse
|
10
|
Godefroy G, Arnal B, Bossy E. Full-visibility 3D imaging of oxygenation and blood flow by simultaneous multispectral photoacoustic fluctuation imaging (MS-PAFI) and ultrasound Doppler. Sci Rep 2023; 13:2961. [PMID: 36806304 PMCID: PMC9941110 DOI: 10.1038/s41598-023-29177-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
We present a method and setup that provide complementary three-dimensional (3D) images of blood oxygenation (via quantitative photoacoustic imaging) and blood flow dynamics (via ultrasound Doppler). The proposed approach is label-free and exploits blood-induced fluctuations, and is implemented on a sparse array with only 256 elements, driven with a commercially available ultrasound electronics. We first implement 3D photoacoustic fluctuation imaging (PAFI) to image chicken embryo, and obtain full-visibility images of the vascular morphology. We obtain simultaneously 3D ultrasound power Doppler with a comparable image quality. We then introduce multispectral photoacoustic fluctuation imaging (MS-PAFI), and demonstrate that it can provide quantitative measurements of the absorbed optical energy density with full visibility and enhanced contrast, as compared to conventional delay-and-sum multispectral photoacoustic imaging. We finally showcase the synergy and complementarity between MS-PAFI, which provides 3D quantitative oxygenation (SO[Formula: see text]) imaging, and 3D ultrasound Doppler, which provides quantitative information on blood flow dynamics. MS-PAFI represents a promising alternative to model-based inversions with the advantage of resolving all the visibility artefacts without prior and regularization, by use of a straightforward processing scheme.
Collapse
Affiliation(s)
- Guillaume Godefroy
- grid.462689.70000 0000 9272 9931Univ. Grenoble Alpes, LIPhy, CNRS, Grenoble, 38000 France
| | - Bastien Arnal
- grid.462689.70000 0000 9272 9931Univ. Grenoble Alpes, LIPhy, CNRS, Grenoble, 38000 France
| | - Emmanuel Bossy
- Univ. Grenoble Alpes, LIPhy, CNRS, Grenoble, 38000, France.
| |
Collapse
|
11
|
Huen I, Zhang R, Bi R, Li X, Moothanchery M, Olivo M. An Investigation of Signal Preprocessing for Photoacoustic Tomography. SENSORS (BASEL, SWITZERLAND) 2023; 23:510. [PMID: 36617107 PMCID: PMC9823775 DOI: 10.3390/s23010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Photoacoustic tomography (PAT) is increasingly being used for high-resolution biological imaging at depth. Signal-to-noise ratios and resolution are the main factors that determine image quality. Various reconstruction algorithms have been proposed and applied to reduce noise and enhance resolution, but the efficacy of signal preprocessing methods which also affect image quality, are seldom discussed. We, therefore, compared common preprocessing techniques, namely bandpass filters, wavelet denoising, empirical mode decomposition, and singular value decomposition. Each was compared with and without accounting for sensor directivity. The denoising performance was evaluated with the contrast-to-noise ratio (CNR), and the resolution was calculated as the full width at half maximum (FWHM) in both the lateral and axial directions. In the phantom experiment, counting in directivity was found to significantly reduce noise, outperforming other methods. Irrespective of directivity, the best performing methods for denoising were bandpass, unfiltered, SVD, wavelet, and EMD, in that order. Only bandpass filtering consistently yielded improvements. Significant improvements in the lateral resolution were observed using directivity in two out of three acquisitions. This study investigated the advantages and disadvantages of different preprocessing methods and may help to determine better practices in PAT reconstruction.
Collapse
|
12
|
Chen Z, Gezginer I, Augath MA, Ren W, Liu YH, Ni R, Deán-Ben XL, Razansky D. Hybrid magnetic resonance and optoacoustic tomography (MROT) for preclinical neuroimaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:332. [PMID: 36418860 PMCID: PMC9684112 DOI: 10.1038/s41377-022-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Multi-modal imaging is essential for advancing our understanding of brain function and unraveling pathophysiological processes underlying neurological and psychiatric disorders. Magnetic resonance (MR) and optoacoustic (OA) imaging have been shown to provide highly complementary contrasts and capabilities for preclinical neuroimaging. True integration between these modalities can thus offer unprecedented capabilities for studying the rodent brain in action. We report on a hybrid magnetic resonance and optoacoustic tomography (MROT) system for concurrent noninvasive structural and functional imaging of the mouse brain. Volumetric OA tomography was designed as an insert into a high-field MR scanner by integrating a customized MR-compatible spherical transducer array, an illumination module, and a dedicated radiofrequency coil. A tailored data processing pipeline has been developed to mitigate signal crosstalk and accurately register image volumes acquired with T1-weighted, angiography, and blood oxygenation level-dependent (BOLD) sequences onto the corresponding vascular and oxygenation data recorded with the OA modality. We demonstrate the concurrent acquisition of dual-mode anatomical and angiographic brain images with the scanner, as well as real-time functional readings of multiple hemodynamic parameters from animals subjected to oxygenation stress. Our approach combines the functional and molecular imaging advantages of OA with the superb soft-tissue contrast of MR, further providing an excellent platform for cross-validation of functional readings by the two modalities.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
| |
Collapse
|
13
|
Lafci B, Robin J, Dean-Ben XL, Razansky D. Expediting Image Acquisition in Reflection Ultrasound Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2837-2848. [PMID: 35507610 DOI: 10.1109/tuffc.2022.3172713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reflection ultrasound computed tomography (RUCT) attains optimal image quality from objects that can be fully accessed from multiple directions, such as the human breast or small animals. Owing to the full-view tomography approach based on the compounding of images taken from multiple angles, RUCT effectively mitigates several deficiencies afflicting conventional pulse-echo ultrasound (US) systems, such as speckle patterns and interuser variability. On the other hand, the small interelement pitch required to fulfill the spatial sampling criterion in the circular transducer configuration used in RUCT typically implies the use of an excessive number of independent array elements. This increases the system's complexity and costs, and limits the achievable imaging speed. Here, we explore acquisition schemes that enable RUCT imaging with the reduced number of transmit/receive elements. We investigated the influence of the element size in transmission and reception in a ring array geometry. The performance of a sparse acquisition approach based on partial acquisition from a subset of the elements has been further assessed. A larger element size is shown to preserve contrast and resolution at the center of the field of view (FOV), while a reduced number of elements is shown to cause uniform loss of contrast and resolution across the entire FOV. The tradeoffs of achievable FOV, contrast-to-noise ratio, and temporal and spatial resolutions are assessed in phantoms and in vivo mouse experiments. The experimental analysis is expected to aid the development of optimized hardware and image acquisition strategies for RUCT and, thus, result in more affordable imaging systems facilitating wider adoption.
Collapse
|
14
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Na S, Zhang Y, Wang LV. Cross-Ray Ultrasound Tomography and Photoacoustic Tomography of Cerebral Hemodynamics in Rodents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201104. [PMID: 35818697 PMCID: PMC9443457 DOI: 10.1002/advs.202201104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in functional ultrasound imaging (fUS) and photoacoustic tomography (PAT) offer powerful tools for studying brain function. Complementing each other, fUS and PAT, respectively, measure the cerebral blood flow (CBF) and hemoglobin concentrations, allowing synergistic characterization of cerebral hemodynamics. Here, cross-ray ultrasound tomography (CRUST) and its combination with PAT are presented. CRUST employs a virtual point source from a spherically focused ultrasonic transducer (SFUST) to provide widefield excitation at a 4-kHz pulse repetition frequency. A full-ring-shaped ultrasonic transducer array whose imaging plane is orthogonal to the SFUST's acoustic axis receives scattered ultrasonic waves. Superior to conventional fUS, whose sensitivity to blood flow is angle-dependent and low for perpendicular flow, the crossed transmission and panoramic detection fields of CRUST provide omnidirectional sensitivity to CBF. Using CRUST-PAT, the CBF, oxygen saturation, and hemoglobin concentration changes of the mouse brain during sensory stimulation are measured, with a field of view of ≈7 mm in diameter, spatial resolution of ≈170 µm, and temporal resolution of 200 Hz. The results demonstrate CRUST-PAT as a unique tool for studying cerebral hemodynamics.
Collapse
Affiliation(s)
- Shuai Na
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
- Present address:
National Biomedical Imaging Center, College of Future TechnologyPeking UniversityBeijing100871China
| | - Yang Zhang
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Lihong V. Wang
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
- Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| |
Collapse
|
16
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
17
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Zhang Y, Wang Y, Lai P, Wang L. Video-Rate Dual-Modal Wide-Beam Harmonic Ultrasound and Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:727-736. [PMID: 34694993 DOI: 10.1109/tmi.2021.3122240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dual-modal ultrasound (US) and photoacoustic (PA) imaging has tremendous advantages in biomedical applications, such as pharmacokinetics, cancer screening, and imaging-guided therapy. Compared with ring-shaped arrays, a linear piezoelectric transducer array applies to more anatomical sites and has been widely used in US/PA imaging. However, the linear array may limit the imaging quality due to narrow bandwidth, partial detection view, or sparse spatial sampling. To meet clinic demand of high-quality US/PA imaging with the linear transducer, we develop dual-modal wide-beam harmonic ultrasound (WBHUS) and photoacoustic computed tomography at video rate. The harmonic US imaging employs pulse phase inversion to reduce clutters and improve spatial resolution. Wide-beam US transmission can shorten the scanning times by 267% and enables a 20-Hz imaging rate, which can minimize motion artifacts in in vivo imaging. The harmonic US imaging does not only provide accurate anatomical references for locating PA features but also reduces artifacts in PA images. The improved image quality allows us to acquire high-resolution anatomical structures in deep tissue without labeling. The fast-imaging speed enables visualizing interventional procedures and monitoring the pulsations of the thoracic aorta and radial artery in real-time. The video-rate dual-modal harmonic US and single-shot PA computed tomography use a clinical-grade linear-array transducer and thus can be readily implemented in clinical US imaging.
Collapse
|
19
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
20
|
Ozsoy C, Cossettini A, Ozbek A, Vostrikov S, Hager P, Dean-Ben XL, Benini L, Razansky D. LightSpeed: A Compact, High-Speed Optical-Link-Based 3D Optoacoustic Imager. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2023-2029. [PMID: 33798077 DOI: 10.1109/tmi.2021.3070833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wide-scale adoption of optoacoustic imaging in biology and medicine critically depends on availability of affordable scanners combining ease of operation with optimal imaging performance. Here we introduce LightSpeed: a low-cost real-time volumetric handheld optoacoustic imager based on a new compact software-defined ultrasound digital acquisition platform and a pulsed laser diode. It supports the simultaneous signal acquisition from up to 192 ultrasound channels and provides a hig-bandwidth direct optical link (2x 100G Ethernet) to the host-PC for ultra-high frame rate image acquisitions. We demonstrate use of the system for ultrafast (500Hz) 3D human angiography with a rapidly moving handheld probe. LightSpeed attained image quality comparable with a conventional optoacoustic imaging systems employing bulky acquisition electronics and a Q-switched pulsed laser. Our results thus pave the way towards a new generation of compact, affordable and high-performance optoacoustic scanners.
Collapse
|
21
|
Duan Y, Cheng Z, Qiu T, Wen L, Xiong K. Spherical-matching hyperbolic-array photoacoustic computed tomography. JOURNAL OF BIOPHOTONICS 2021; 14:e202100023. [PMID: 33729687 DOI: 10.1002/jbio.202100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Linear-array photoacoustic computed tomography (LA-PACT), for its flexibility and simplicity, has great potential in providing anatomical and functional information of tissues. However, the limited coverage view impedes the LA-PACT obtaining high-quality images. In this study, a photoacoustic tomographic system with a hyperbolic-array transducer was developed for stereoscopic PA imaging of carotid artery. The hyperbolic-array PACT increases the receiving sensitivity for PA signal detection due to its transducer's geometric structure matching with the spherical wave. The control phantom experiment shows that the proposed system can expand the angular coverage of ∼1/3 more than that of the LA-PACT system, and the volumetric PA images of rat's carotid artery demonstrates the potential of the system for carotid artery imaging. Furthermore, volumetric imaging of the human forearm verifies that the system has significant capability in human imaging, which indicates that it has bright prospect for assisting diagnosis in the vascular disease.
Collapse
Affiliation(s)
- Yihao Duan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tengsen Qiu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Liewei Wen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Wang X, Huang L, Chi Z, Jiang H. Integrated thermoacoustic and ultrasound imaging based on the combination of a hollow concave transducer array and a linear transducer array. Phys Med Biol 2021; 66. [PMID: 34014177 DOI: 10.1088/1361-6560/abfc91] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
To integrate the high resolution of ultrasound imaging (UI) and the high tissue specificity of thermoacoustic imaging (TAI) and to achieve an easy and precise co-registration of the two different imaging modalities, we present and demonstrate a hybrid thermoacoustic and ultrasound (TA/US) imaging system based on the combination of a novel hollow concave array and a commercial linear array. This TA/US imaging system can provide enhanced imaging of both tissues' mechanical and dielectric properties. We verified the effective imaging performance of the hybrid TA/US system using tissue phantom experiments.In vivoTA/US imaging of the wrist and foot in healthy volunteers was also demonstrated using the hybrid system. This hollow concave array provided enhanced imaging performance for TAI because of its wide angular coverage with an optimal center frequency, showing a large effective imaging field of view (FOV) and improved images with high contrast and superior quality. Compared with stand-alone UI or TAI, the hybrid TA/US imaging presented more complete tissue anatomical structures, like skin, muscles, tendons, blood vessels, and bones for possible human disease diagnosis, although the US image quality using the hybrid system was slightly lower because the distance between the tissue and commercial ultrasound array was not ideal. This study suggests that the hybrid TA/US imaging approach has the potential to become a clinical tool for diagnosis of diseases in the wrist and foot.
Collapse
Affiliation(s)
- Xue Wang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lin Huang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China.,Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Zihui Chi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, United States of America
| |
Collapse
|
23
|
Deán-Ben XL, Razansky D. Optoacoustic imaging of the skin. Exp Dermatol 2021; 30:1598-1609. [PMID: 33987867 DOI: 10.1111/exd.14386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration. SENSORS 2021; 21:s21103366. [PMID: 34066263 PMCID: PMC8152003 DOI: 10.3390/s21103366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Multispectral photoacoustic imaging is a powerful noninvasive medical imaging technique that provides access to functional information. In this study, a set of methods is proposed and validated, with experimental multispectral photoacoustic images used to estimate the concentration of chromophores. The unmixing techniques used in this paper consist of two steps: (1) automatic extraction of the reference spectrum of each pure chromophore; and (2) abundance calculation of each pure chromophore from the estimated reference spectra. The compared strategies bring positivity and sum-to-one constraints, from the hyperspectral remote sensing field to multispectral photoacoustic, to evaluate chromophore concentration. Particularly, the study extracts the endmembers and compares the algorithms from the hyperspectral remote sensing domain and a dedicated algorithm for segmentation of multispectral photoacoustic data to this end. First, these strategies are tested with dilution and mixing of chromophores on colored 4% agar phantom data. Then, some preliminary in vivo experiments are performed. These consist of estimations of the oxygen saturation rate (sO2) in mouse tumors. This article proposes then a proof-of-concept of the interest to bring hyperspectral remote sensing algorithms to multispectral photoacoustic imaging for the estimation of chromophore concentration.
Collapse
|
25
|
Regensburger AP, Brown E, Krönke G, Waldner MJ, Knieling F. Optoacoustic Imaging in Inflammation. Biomedicines 2021; 9:483. [PMID: 33924983 PMCID: PMC8145174 DOI: 10.3390/biomedicines9050483] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| | - Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gerhard Krönke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| |
Collapse
|
26
|
Lafci B, Mercep E, Morscher S, Dean-Ben XL, Razansky D. Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound (OPUS) Images. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:688-696. [PMID: 32894712 DOI: 10.1109/tuffc.2020.3022324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The highly complementary information provided by multispectral optoacoustics and pulse-echo ultrasound have recently prompted development of hybrid imaging instruments bringing together the unique contrast advantages of both modalities. In the hybrid optoacoustic ultrasound (OPUS) combination, images retrieved by one modality may further be used to improve the reconstruction accuracy of the other. In this regard, image segmentation plays a major role as it can aid improving the image quality and quantification abilities by facilitating modeling of light and sound propagation through the imaged tissues and surrounding coupling medium. Here, we propose an automated approach for surface segmentation in whole-body mouse OPUS imaging using a deep convolutional neural network (CNN). The method has shown robust performance, attaining accurate segmentation of the animal boundary in both optoacoustic and pulse-echo ultrasound images, as evinced by quantitative performance evaluation using Dice coefficient metrics.
Collapse
|
27
|
Ren W, Deán-Ben XL, Augath MA, Razansky D. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: A phantom feasibility study. JOURNAL OF BIOPHOTONICS 2021; 14:e202000293. [PMID: 33169918 DOI: 10.1002/jbio.202000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
Optoacoustic tomography (OAT) and magnetic resonance imaging (MRI) provide highly complementary capabilities for anatomical and functional imaging of living organisms. Herein, we investigate on the feasibility of combining both modalities to render concurrent images. This was achieved by introducing a specifically-designed copper-shielded spherical ultrasound array into a preclinical MRI scanner. Phantom experiments revealed that the OAT probe caused minimal distortion in the MRI images, while synchronization of the laser and the MRI pulse sequence enabled defining artifact-free acquisition windows for OAT. Good dynamic OAT contrast from superparamagnetic iron oxide nanoparticles, a commonly used agent for MRI contrast enhancement, was also observed. The hybrid OAT-MRI system thus provides an excellent platform for cross-validating functional readings of both modalities. Overall, this initial study serves to establish the technical feasibility of developing a hybrid OAT-MRI system for biomedical research.
Collapse
Affiliation(s)
- Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Jeng GS, Li ML, Kim M, Yoon SJ, Pitre JJ, Li DS, Pelivanov I, O’Donnell M. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat Commun 2021; 12:716. [PMID: 33514737 PMCID: PMC7846772 DOI: 10.1038/s41467-021-20947-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.
Collapse
Affiliation(s)
- Geng-Shi Jeng
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA ,grid.260539.b0000 0001 2059 7017Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Lin Li
- grid.38348.340000 0004 0532 0580Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - MinWoo Kim
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Soon Joon Yoon
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - John J. Pitre
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - David S. Li
- grid.34477.330000000122986657Department of Chemical Engineering, University of Washington, Seattle, WA USA
| | - Ivan Pelivanov
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Matthew O’Donnell
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
29
|
Simultaneous Dual-Modal Multispectral Photoacoustic and Ultrasound Macroscopy for Three-Dimensional Whole-Body Imaging of Small Animals. PHOTONICS 2021. [DOI: 10.3390/photonics8010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoacoustic imaging is a promising medical imaging technique that provides excellent function imaging of an underlying biological tissue or organ. However, it is limited in providing structural information compared to other imaging modalities, such as ultrasound imaging. Thus, to offer complete morphological details of biological tissues, photoacoustic imaging is typically integrated with ultrasound imaging. This dual-modal imaging technique is already implemented on commercial clinical ultrasound imaging platforms. However, commercial platforms suffer from limited elevation resolution compared to the lateral and axial resolution. We have successfully developed a dual-modal photoacoustic and ultrasound imaging to address these limitations, specifically targeting animal studies. The system can acquire whole-body images of mice in vivo and provide complementary structural and functional information of biological tissue information simultaneously. The color-coded depth information can be readily obtained in photoacoustic images using complementary information from ultrasound images. The system can be used for several biomedical applications, including drug delivery, biodistribution assessment, and agent testing.
Collapse
|
30
|
Estrada H, Ozbek A, Robin J, Shoham S, Razansky D. Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:107-115. [PMID: 32406833 PMCID: PMC7952015 DOI: 10.1109/tuffc.2020.2994877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound can be delivered transcranially to ablate brain tissue, open the blood-brain barrier, or affect neural activity. Transcranial focused ultrasound in small rodents is typically done with low-frequency single-element transducers, which results in unspecific targeting and impedes the concurrent use of fast neuroimaging methods. In this article, we devised a wide-angle spherical array bidirectional interface for high-resolution parallelized optoacoustic imaging and transcranial ultrasound (POTUS) delivery in the same target regions. The system operates between 3 and 9 MHz, allowing to generate and steer focal spots with widths down to [Formula: see text] across a field of view covering the entire mouse brain, while the same array is used to capture high-resolution 3-D optoacoustic data in real time. We showcase the system's versatile beam-forming capacities as well as volumetric optoacoustic imaging capabilities and discuss its potential to noninvasively monitor brain activity and various effects of ultrasound emission.
Collapse
|
31
|
Shamekhi S, Periyasamy V, Pramanik M, Mehrmohammadi M, Mohammadzadeh Asl B. Eigenspace-based minimum variance beamformer combined with sign coherence factor: Application to linear-array photoacoustic imaging. ULTRASONICS 2020; 108:106174. [PMID: 32502893 DOI: 10.1016/j.ultras.2020.106174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic (PA) imaging combining the advantages of high resolution of ultrasound imaging and high contrast of optical imaging provides images with good quality. PA imaging often suffers from disadvantages such as clutter noises and decreased signal-to-noise-ratio at higher depths. One studied method to reduce clutter noises is to use weighting factors such as coherence factor (CF) and its modified versions that improve resolution and contrast of images. In this study, we combined the Eigen-space based minimum variance (EIBMV) beamformer with the sign coherence factor (SCF) and show the ability of these methods for noise reduction when they are used in combination with each other. In addition, we compared the proposed method with delay-and-sum (DAS) and minimum variance (MV) beamformers in simulated and experimental studies. The simulation results show that the proposed EIBMV-SCF method improves the SNR about 94 dB, 87.65 dB, and 62.29 dB compared to the DAS, MV, and EIBMV, respectively, and the corresponding improvements were 79.37/34.43 dB, 77.25/26.96 dB, and 33.19/25.56 dB in the ex vivo/in vivo experiments.
Collapse
Affiliation(s)
- Sadaf Shamekhi
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Vijitha Periyasamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
32
|
Cho S, Jeon S, Choi W, Managuli R, Kim C. Nonlinear pth root spectral magnitude scaling beamforming for clinical photoacoustic and ultrasound imaging. OPTICS LETTERS 2020; 45:4575-4578. [PMID: 32797013 DOI: 10.1364/ol.393315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 05/20/2023]
Abstract
A recently introduced nonlinear pth root delay-and-sum (NL-p-DAS) beamforming (BF) technique for ultrasound (US) and photoacoustic (PA) imaging, achieving better spatial and contrast resolution compared to a conventional delay and sum (DAS) technique. While the method is advantageous for better resolution, it suffers from grainy speckles and dark areas in the image mainly due to the interference of non-sinusoidal functions. In this Letter, we introduce a modified NL-p-DAS technique called nonlinear pth root spectral magnitude scaling (NL-p-SMS), which performs the pth root on the spectral magnitude instead of the temporal amplitude. We evaluated the US and PA images of NL-p-SMS against those of NL-p-DAS by comparing the axial and lateral line profiles, contrasts, and contrast-to-noise ratios (CNRs) in both phantom and in vivo imaging studies with various p values. As a result, we found that the NL-p-SMS has better axial resolution and CNR than the NL-p-DAS, and reduces the grainy speckles and dark area artifacts. We believe that, with this enhanced performance, our proposed approach could be an advancement compared to the existing nonlinear BF algorithms.
Collapse
|
33
|
Yang J, Zhang G, Shang Q, Wu M, Huang L, Jiang H. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000011. [PMID: 32362070 DOI: 10.1002/jbio.202000011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 05/21/2023]
Abstract
Limb perfusion monitoring is critical for diabetes mellitus (DM) patients as they are vulnerable to vascular complications due to prolonged hyperglycemia. However, current clinical approaches are ineffective in vascular imaging and in assessing vascular function in lower limbs. In this work, a concave ultrasound transducer array-based photoacoustic tomography (PAT) system was used to image the foot dorsal section of a subject, and a total of seven DM patients and seven healthy volunteers were enrolled in this study. Hemodynamic changes in foot vessels during vascular occlusion as well as oxygen saturation (SO2 ) in rest were analyzed for both groups. The results obtained showed that DM patients have a unique peripheral hemodynamic response to occlusion and a lower level SO2 , compared to that for healthy subjects. This suggests that PAT has the potential to detect vascular dysfunction in DM patients and to measure the effect of treatment.
Collapse
Affiliation(s)
- Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guang Zhang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiquan Shang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Wu
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
34
|
Qiu T, Yang J, Pan T, Peng C, Jiang H, Luo Y. Assessment of liver function reserve by photoacoustic tomography: a feasibility study. BIOMEDICAL OPTICS EXPRESS 2020; 11:3985-3995. [PMID: 33014580 DOI: 10.1364/boe.394344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Abstract
Assessment of liver function reserve (LFR) is essential to determine liver resection scope and predict prognosis for patients with liver disease. Indocyanine green (ICG) concentration change is a classic marker to reflect liver function reserve as ICG is selectively taken up and eliminated by liver. Here we proposed a noninvasive approach for LFR assessment based on a real-time photoacoustic tomography (PAT) system. This feasibility study was to detect ICG concentration change by PAT in phantom and in vivo using both normal and partial hepatectomy (PH) rabbits. A linear relationship between photoacoustic signal intensity of ICG and ICG concentration was found in vitro. In vivo ICG concentration change over time after ICG injection was observed by PAT in normal rabbits, which was consistent with the findings measured by invasive spectrophotometry. Finally, clear difference in ICG clearance between the control and PH models was identified by PAT. Taken together, our study indicated the clinical potential of PAT to in vivo evaluate LFR noninvasively.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| | - Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Teng Pan
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China.,Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chihan Peng
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa 33620, USA
| | - Yan Luo
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
35
|
Regensburger AP, Wagner AL, Claussen J, Waldner MJ, Knieling F. Shedding light on pediatric diseases: multispectral optoacoustic tomography at the doorway to clinical applications. Mol Cell Pediatr 2020; 7:3. [PMID: 32130546 PMCID: PMC7056767 DOI: 10.1186/s40348-020-00095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Optoacoustic imaging (OAI), or photoacoustic imaging (PAI), has fundamentally influenced basic science by providing high-resolution visualization of biological mechanisms. With the introduction of multispectral optoacoustic tomography (MSOT), these technologies have now moved closer to clinical applications. MSOT utilizes short-pulsed near-infrared laser light to induce thermoelastic expansion in targeted tissues. This results in acoustic pressure waves, which are used to resolve specific endo- and exogenous chromophores. Especially in the pediatric population, this non-invasive imaging approach might hold fundamental advantages compared to conventional cross-sectional imaging modalities. As this technology allows the visualization of quantitative molecular tissue composition at high spatial resolution non-invasively in sufficient penetration depth, it paves the way to personalized medicine in pediatric diseases.
Collapse
Affiliation(s)
- Adrian P Regensburger
- Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Loschgestraße 15, 91054, Erlangen, Germany
| | - Alexandra L Wagner
- Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Loschgestraße 15, 91054, Erlangen, Germany
| | - Jing Claussen
- Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Loschgestraße 15, 91054, Erlangen, Germany
| | - Maximilian J Waldner
- Medical Department 1, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Loschgestraße 15, 91054, Erlangen, Germany.
| |
Collapse
|
36
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 441] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
Affiliation(s)
| | | | - Mohesh Moothanchery
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - U.S. Dinish
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Renzhe Bi
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| |
Collapse
|
37
|
Vu T, Razansky D, Yao J. Listening to tissues with new light: recent technological advances in photoacoustic imaging. JOURNAL OF OPTICS (2010) 2019; 21:10.1088/2040-8986/ab3b1a. [PMID: 32051756 PMCID: PMC7015182 DOI: 10.1088/2040-8986/ab3b1a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT), or optoacoustic tomography, has achieved remarkable progress in the past decade, benefiting from the joint developments in optics, acoustics, chemistry, computing and mathematics. Unlike pure optical or ultrasound imaging, PAT can provide unique optical absorption contrast as well as widely scalable spatial resolution, penetration depth and imaging speed. Moreover, PAT has inherent sensitivity to tissue's functional, molecular, and metabolic state. With these merits, PAT has been applied in a wide range of life science disciplines, and has enabled biomedical research unattainable by other imaging methods. This Review article aims at introducing state-of-the-art PAT technologies and their representative applications. The focus is on recent technological breakthroughs in structural, functional, molecular PAT, including super-resolution imaging, real-time small-animal whole-body imaging, and high-sensitivity functional/molecular imaging. We also discuss the remaining challenges in PAT and envisioned opportunities.
Collapse
Affiliation(s)
- Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Deán-Ben XL, Razansky D. Optoacoustic image formation approaches-a clinical perspective. Phys Med Biol 2019; 64:18TR01. [PMID: 31342913 DOI: 10.1088/1361-6560/ab3522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of the signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. Department of Information Technology and Electrical Engineering and Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
39
|
Yang J, Zhang G, Wu M, Shang Q, Huang L, Jiang H. Photoacoustic assessment of hemodynamic changes in foot vessels. JOURNAL OF BIOPHOTONICS 2019; 12:e201900004. [PMID: 30916865 DOI: 10.1002/jbio.201900004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Monitoring the blood supply in the lower extremities is critical for individuals who are vulnerable to vascular dysfunction. Current clinical approaches are ineffective in observing hemodynamic changes in peripheral vessels. In this paper, we investigate the potential of photoacoustic tomography (PAT) as an alternative way to in vivo monitor hemodynamic changes in foot vessels. High spatial and temporal resolution maps of hemoglobin in major arteries and veins are shown. Results from twelve human subjects are presented here to visualize vascular perfusion of healthy volunteers in two age groups (young vs aged). Significant differences between the two groups are observed and verify the declining in vascular function with aging, highlighting the potential of PAT as a new tool to evaluate vascular function in the lower extremities.
Collapse
Affiliation(s)
- Jinge Yang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Guang Zhang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Man Wu
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Qiquan Shang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Huabei Jiang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu, China
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| |
Collapse
|
40
|
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. PHOTOACOUSTICS 2019; 14:77-98. [PMID: 31293884 PMCID: PMC6595011 DOI: 10.1016/j.pacs.2019.05.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
Collapse
Affiliation(s)
- Idan Steinberg
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
| | - David M. Huland
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Ophir Vermesh
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Hadas E. Frostig
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Willemieke S. Tummers
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Bioengineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Department of Materials Science & Engineering, At Stanford University, School of Medicine, Stanford, CA, United States
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, At Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
41
|
The Progress in Photoacoustic and Laser Ultrasonic Tomographic Imaging for Biomedicine and Industry: A Review. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current paper reviews a set of principles and applications of photoacoustic and laser ultrasonic imaging, developed in the Laser Optoacoustic Laboratories of ILIT RAS, NUST MISiS, and ILC MSU. These applications include combined photoacoustic and laser ultrasonic imaging for biological objects, and tomographic laser ultrasonic imaging of solids. Principles, algorithms, resolution of the developed methods, and related problems are discussed. The review is written in context of the current state-of-art of photoacoustic and laser ultrasonic imaging.
Collapse
|
42
|
Matsumoto Y, Asao Y, Sekiguchi H, Yoshikawa A, Ishii T, Nagae KI, Kobayashi S, Tsuge I, Saito S, Takada M, Ishida Y, Kataoka M, Sakurai T, Yagi T, Kabashima K, Suzuki S, Togashi K, Shiina T, Toi M. Visualising peripheral arterioles and venules through high-resolution and large-area photoacoustic imaging. Sci Rep 2018; 8:14930. [PMID: 30297721 PMCID: PMC6175891 DOI: 10.1038/s41598-018-33255-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/06/2018] [Indexed: 01/26/2023] Open
Abstract
Photoacoustic (PA) imaging (PAI) has been shown to be a promising tool for non-invasive blood vessel imaging. A PAI system comprising a hemispherical detector array (HDA) has been reported previously as a method providing high morphological reproducibility. However, further improvements in diagnostic capability will require improving the image quality of PAI and fusing functional and morphological imaging. Our newly developed PAI system prototype not only enhances the PA image resolution but also acquires ultrasonic (US) B-mode images at continuous positions in the same coordinate axes. In addition, the pulse-to-pulse alternating laser irradiation shortens the measurement time difference between two wavelengths. We scanned extremities and breasts in an imaging region 140 mm in diameter and obtained 3D-PA images of fine blood vessels, including arterioles and venules. We could estimate whether a vessel was an artery or a vein by using the S-factor obtained from the PA images at two wavelengths, which corresponds approximately to the haemoglobin oxygen saturation. Furthermore, we observed tumour-related blood vessels around breast tumours with unprecedented resolution. In the future, clinical studies with our new PAI system will help to elucidate various mechanisms of vascular-associated diseases and events.
Collapse
Affiliation(s)
- Yoshiaki Matsumoto
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasufumi Asao
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, ImPACT Program, Cabinet Office, Kyoto, Japan
| | - Hiroyuki Sekiguchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aya Yoshikawa
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Ishii
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken-Ichi Nagae
- Medical Imaging Development Center, Canon Inc., Kyoto, Japan
| | | | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Ishida
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Yagi
- Japan Science and Technology Agency, ImPACT Program, Cabinet Office, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Shiina
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Merčep E, Deán-Ben XL, Razansky D. Imaging of blood flow and oxygen state with a multi-segment optoacoustic ultrasound array. PHOTOACOUSTICS 2018; 10:48-53. [PMID: 29988801 PMCID: PMC6032509 DOI: 10.1016/j.pacs.2018.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 05/03/2023]
Abstract
Changes in hemodynamic parameters are directly linked to biological function and physiological activity. Characterization of hemodynamics is commonly performed by Doppler ultrasound, which provides accurate measurements of blood flow velocity. Multi-spectral optoacoustic tomography is rapidly undergoing clinical translation fostered by its unique and complementary capacity for label-free mapping of the blood volume and the distribution of oxy- and deoxy-hemoglobin in blood. Here we report on a hybrid optoacoustic and ultrasound imaging approach that enables multi-modal imaging of blood flow and oxygen state using a multi-segment detector array. We further demonstrate rendering of multi-modal pulse-echo ultrasound, multi-spectral optoacoustic tomography, and color Doppler images from carotid artery of a healthy subject.
Collapse
Affiliation(s)
- Elena Merčep
- Faculty of Medicine, Technical University of Munich, Germany
- iThera Medical GmbH, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| | - Daniel Razansky
- Faculty of Medicine, Technical University of Munich, Germany
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|