1
|
Su L, Chen L, Tang W, Gao H, Chen Y, Gao C, Yi H, Cao X. Dictionary Learning Method Based on K-Sparse Approximation and Orthogonal Procrustes Analysis for Reconstruction in Bioluminescence Tomography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400308. [PMID: 39375540 DOI: 10.1002/jbio.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Bioluminescence tomography (BLT) is one kind of noninvasive optical molecular imaging technology, widely used to study molecular activities and disease progression inside live animals. By combining the optical propagation model and inversion algorithm, BLT enables three-dimensional imaging and quantitative analysis of light sources within organisms. However, challenges like light scattering and absorption in tissues, and the complexity of biological structures, significantly impact the accuracy of BLT reconstructions. Here, we propose a dictionary learning method based on K-sparse approximation and Orthogonal Procrustes analysis (KSAOPA). KSAOPA uses an iterative alternating optimization strategy, enhancing solution sparsity with k-coefficients Lipschitzian mappings for sparsity(K-LIMAPS) in the sparse coding stage, and reducing errors with Orthogonal Procrustes analysis in the dictionary update stage, leading to stable and precise reconstructions. We assessed the method performance through simulations and in vivo experiments, which showed that KSAOPA excels in localization accuracy, morphological recovery, and in vivo applicability compared to other methods.
Collapse
Affiliation(s)
- Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Limin Chen
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Wenlong Tang
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Huimin Gao
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Yi Chen
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia
| | - Chengyi Gao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Zhang G, Zhang J, Chen Y, Du M, Li K, Su L, Yi H, Zhao F, Cao X. Logarithmic total variation regularization via preconditioned conjugate gradient method for sparse reconstruction of bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107863. [PMID: 37871449 DOI: 10.1016/j.cmpb.2023.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence Tomography (BLT) is a powerful optical molecular imaging technique that enables the noninvasive investigation of dynamic biological phenomena. It aims to reconstruct the three-dimensional spatial distribution of bioluminescent sources from optical measurements collected on the surface of the imaged object. However, BLT reconstruction is a challenging ill-posed problem due to the scattering effect of light and the limitations in detecting surface photons, which makes it difficult for existing methods to achieve satisfactory reconstruction results. In this study, we propose a novel method for sparse reconstruction of BLT based on a preconditioned conjugate gradient with logarithmic total variation regularization (PCG-logTV). METHOD This PCG-logTV method incorporates the sparsity of overlapping groups and enhances the sparse structure of these groups using logarithmic functions, which can preserve edge features and achieve more stable reconstruction results in BLT. To accelerate the convergence of the algorithm solution, we use the preconditioned conjugate gradient iteration method on the objective function and obtain the reconstruction results. We demonstrate the performance of our proposed method through numerical simulations and in vivo experiment. RESULTS AND CONCLUSIONS The results show that the PCG-logTV method obtains the most accurate reconstruction results, and the minimum position error (LE) is 0.254mm, which is 26%, 31% and 34% of the FISTA (0.961), IVTCG (0.81) and L1-TV (0.739) methods, and the root mean square error (RMSE) and relative intensity error (RIE) are the smallest, indicating that it is closest to the real light source. In addition, compared with the other three methods, the PCG-logTV method also has the highest DICE similarity coefficient, which is 0.928, which means that this method can effectively reconstruct the three-dimensional spatial distribution of bioluminescent light sources, has higher resolution and robustness, and is beneficial to the preclinical and clinical studies of BLT.
Collapse
Affiliation(s)
- Gege Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Jun Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Mengfei Du
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
3
|
Wei X, Guo H, Yu J, Liu Y, Zhao Y, He X. Multi-target reconstruction based on subspace decision optimization for bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107711. [PMID: 37451228 DOI: 10.1016/j.cmpb.2023.107711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence tomography (BLT) is a noninvasive optical imaging technique that provides qualitative and quantitative information on the spatial distribution of tumors in living animals. Researchers have proposed a list of algorithms and strategies for BLT reconstruction to improve its reconstruction quality. However, multi-target BLT reconstruction remains challenging in practical clinical applications due to the mutual interference of optical signals and difficulty in source separation. METHODS To solve this problem, this study proposes the subspace decision optimization (SDO) approach based on the traditional iterative permissible region strategy. The SDO approach transforms a single permissible region into multiple subspaces by clustering analysis. These subspaces are shrunk based on subspace shrinking optimization to achieve spatial continuity of the permissible regions. In addition, these subspaces are merged to construct a new permissible region and then the next iteration of reconstruction is carried out to ensure the stability of the results. Finally, all the iterative results are optimized based on the normal distribution model and the distribution properties of the targets to ensure the sparsity of each target and the non-biasing of the overall results. RESULTS Experimental results show that the SDO approach can automatically identify and separate different targets, ensuring the accuracy and quality of multi-target BLT reconstruction results. Meanwhile, SDO can combine various types of reconstruction algorithms and provide stable and high-quality reconstruction results independent of the algorithm parameters. CONCLUSIONS The SDO approach provides an integrated solution to the multi-target BLT reconstruction problem, realizing the whole process including target recognition, separation, reconstruction, and result enhancement, which can extend the application domain of BLT.
Collapse
Affiliation(s)
- Xiao Wei
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Hongbo Guo
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanqiu Liu
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Yingcheng Zhao
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| |
Collapse
|
4
|
Wang B, Li S, He X, Zhao Y, Zhang H, He X, Yu J, Guo H. Structure-fused deep 3D hierarchical network: A bioluminescence tomography scheme for different imaging objects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083149 DOI: 10.1109/embc40787.2023.10340967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Monte Carlo eXtreme (MCX) method has a unique advantage for deep neural network based bioluminescence tomography (BLT) reconstruction. However, this method ignores the distribution of sources energy and relies on the determined tissue structure. In this paper, a deep 3D hierarchical reconstruction network for BLT was proposed where the inputs were divided into two parts -- bioluminescence image (BLI) and anatomy of the imaged object by CT. Firstly, a parallel encoder is used to feature the original BLI & CT slices and integrate their features to distinguish the different tissue structure of imaging objects; Secondly, GRU is used to fit the spatial information of different slices and convert it into 3D features; Finally, the 3D features are decoded to the spacial and energy information of source by a symmetrical decoding structure. Our research suggested that this method can effectively compute the radiation intensity and the spatial distribution of the source for different imaging object.
Collapse
|
5
|
Chu M, Guo H, He X, Wang B, Liu Y, Hu X, Yu J, He X. A Graph-guided Hybrid Regularization Method For Bioluminescence Tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107329. [PMID: 36608432 DOI: 10.1016/j.cmpb.2022.107329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence tomography (BLT) is a powerful and sensitive imaging technique having great potential in preclinical application, such as tumor imaging, monitoring and therapy, etc. Regularization plays an important role in BLT reconstruction for considering the priori information to overcome the inherent ill-posedness of the inverse problem. Therefore, well-designed regularization term and sophisticated algorithm for solving the consequent optimization problem are key to improve the BLT quality. METHODS To balance the sparsity, smoothness and morphological characteristics of the bioluminescence targets, we constructed a novel Graph-Guided Hybrid Regularization (GGHR) method by combining graph-guided penalty term with L1 and L2 norm regularizer. To solve the corresponding minimization problem with hybrid penalties, the dual decomposition and Nesterov's smoothing technique were adopted to decouple and transform the non-separable and non-smooth graph-guided penalty term into a differential smooth approximation form, which was solved by the fast iterative shrinkage thresholding algorithm. RESULTS The performance of the proposed GGHR method was verified and evaluated through a series of simulation, phantom and in vivo experiments. The comparison results demonstrated that the GGHR method outperformed current mainstream reconstruction algorithms in spatial localization, morphology recovery and in vivo practicality. CONCLUSIONS The proposed GGHR method is a robust and practicality reconstruction algorithm for further highlighting the positive effect of hybrid regularization on BLT applications.
Collapse
Affiliation(s)
- Mengxiang Chu
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Network and Data Center, Northwest University, Xi'an, 710127, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China.
| | - Hongbo Guo
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China.
| | - Xuelei He
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China
| | - Beilei Wang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China
| | - Yanqiu Liu
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China
| | - Xiangong Hu
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Network and Data Center, Northwest University, Xi'an, 710127, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaowei He
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China; School of Network and Data Center, Northwest University, Xi'an, 710127, China; School of Information Sciences and Technology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
6
|
Guo L, Cai M, Zhang X, Zhang Z, Shi X, Zhang X, Liu J, Hu Z, Tian J. A novel weighted auxiliary set matching pursuit method for glioma in Cerenkov luminescence tomography reconstruction. JOURNAL OF BIOPHOTONICS 2022; 15:e202200126. [PMID: 36328059 DOI: 10.1002/jbio.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Cerenkov luminescence tomography (CLT) is a promising three-dimensional imaging technology that has been actively investigated in preclinical studies. However, because of the ill-posedness in the inverse problem of CLT reconstruction, the reconstruction performance is still not satisfactory for broad biomedical applications. In this study, a novel weighted auxiliary set matching pursuit (WASMP) method was explored to enhance the accuracy of CLT reconstruction. The numerical simulations and in vivo imaging studies using tumor-bearing mice models were conducted to evaluate the performance of the WASMP method. The results of the above experiments proved that the WASMP method achieved superior reconstruction performance than other approaches in terms of positional accuracy and shape recovery. It further demonstrates that the atom selection strategy proposed in this study has a positive effect on improving the accuracy of atoms. The proposed WASMP improves the accuracy for CLT reconstruction for biomedical applications.
Collapse
Affiliation(s)
- Lishuang Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Meishan Cai
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Zhenhua Hu
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Chen Y, Li W, Du M, Su L, Yi H, Zhao F, Li K, Wang L, Cao X. Elastic net-based non-negative iterative three-operator splitting strategy for Cerenkov luminescence tomography. OPTICS EXPRESS 2022; 30:35282-35299. [PMID: 36258483 DOI: 10.1364/oe.465501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cerenkov luminescence tomography (CLT) provides a powerful optical molecular imaging technique for non-invasive detection and visualization of radiopharmaceuticals in living objects. However, the severe photon scattering effect causes ill-posedness of the inverse problem, and the location accuracy and shape recovery of CLT reconstruction results are unsatisfactory for clinical application. Here, to improve the reconstruction spatial location accuracy and shape recovery ability, a non-negative iterative three operator splitting (NNITOS) strategy based on elastic net (EN) regularization was proposed. NNITOS formalizes the CLT reconstruction as a non-convex optimization problem and splits it into three operators, the least square, L1/2-norm regularization, and adaptive grouping manifold learning, then iteratively solved them. After stepwise iterations, the result of NNITOS converged progressively. Meanwhile, to speed up the convergence and ensure the sparsity of the solution, shrinking the region of interest was utilized in this strategy. To verify the effectiveness of the method, numerical simulations and in vivo experiments were performed. The result of these experiments demonstrated that, compared to several methods, NNITOS can achieve superior performance in terms of location accuracy, shape recovery capability, and robustness. We hope this work can accelerate the clinical application of CLT in the future.
Collapse
|
8
|
Zhang H, Hai L, Kou J, Hou Y, He X, Zhou M, Geng G. OPK_SNCA: Optimized prior knowledge via sparse non-convex approach for cone-beam X-ray luminescence computed tomography imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106645. [PMID: 35091228 DOI: 10.1016/j.cmpb.2022.106645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The development of Cone-beam X-ray luminescence computed tomography (CB-XLCT) has allowed the quantitative in-depth biological imaging, but with a greatly ill-posed and ill-conditioned inverse problem. Although the predefined permissible source region (PSR) is a widely used way to alleviate the problem for CB-XLCT imaging, how to obtain the accurate PSR is still a challenge for the process of inverse reconstruction. METHODS We proposed an optimized prior knowledge via a sparse non-convex approach (OPK_SNCA) for CB-XLCT imaging. Firstly, non-convex Lp-norm optimization model was employed for copying with the inverse problem, and an iteratively reweighted split augmented lagrangian shrinkage algorithm was developed to obtain a group of sparse solutions based on different non-convex p values. Secondly, a series of permissible regions (PRs) with different discretized mesh was further achieved, and the intersection operation was implemented on the group of PRs to get a reasonable PSR. After that, the final PSR was adopted as an optimized prior knowledge to enhance the reconstruction quality of inverse reconstruction. RESULTS Both simulation experiments and in vivo experiment were performed to evaluate the efficiency and robustness of the proposed method. CONCLUSIONS The experimental results demonstrated that our proposed method could significantly improve the imaging quality of the distribution of X-ray-excitable nanophosphors for CB-XLCT.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China.
| | - Linqi Hai
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| | - Jiaojiao Kou
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| | - Yuqing Hou
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| | - Mingquan Zhou
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| | - Guohua Geng
- School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China
| |
Collapse
|
9
|
Liu Y, Chu M, Guo H, Hu X, Yu J, He X, Yi H, He X. Multispectral Differential Reconstruction Strategy for Bioluminescence Tomography. Front Oncol 2022; 12:768137. [PMID: 35251958 PMCID: PMC8895370 DOI: 10.3389/fonc.2022.768137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence tomography (BLT) is a promising in vivo molecular imaging tool that allows non-invasive monitoring of physiological and pathological processes at the cellular and molecular levels. However, the accuracy of the BLT reconstruction is significantly affected by the forward modeling errors in the simplified photon propagation model, the measurement noise in data acquisition, and the inherent ill-posedness of the inverse problem. In this paper, we present a new multispectral differential strategy (MDS) on the basis of analyzing the errors generated from the simplification from radiative transfer equation (RTE) to diffusion approximation and data acquisition of the imaging system. Through rigorous theoretical analysis, we learn that spectral differential not only can eliminate the errors caused by the approximation of RTE and imaging system measurement noise but also can further increase the constraint condition and decrease the condition number of system matrix for reconstruction compared with traditional multispectral (TM) reconstruction strategy. In forward simulations, energy differences and cosine similarity of the measured surface light energy calculated by Monte Carlo (MC) and diffusion equation (DE) showed that MDS can reduce the systematic errors in the process of light transmission. In addition, in inverse simulations and in vivo experiments, the results demonstrated that MDS was able to alleviate the ill-posedness of the inverse problem of BLT. Thus, the MDS method had superior location accuracy, morphology recovery capability, and image contrast capability in the source reconstruction as compared with the TM method and spectral derivative (SD) method. In vivo experiments verified the practicability and effectiveness of the proposed method.
Collapse
Affiliation(s)
- Yanqiu Liu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Mengxiang Chu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Hongbo Guo
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| | - Xiangong Hu
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China
| | - Xuelei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Huangjian Yi
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
| | - Xiaowei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an, China
- Network and Data Center, Northwest University, Xi’an, China
- *Correspondence: Hongbo Guo, ; Xiaowei He,
| |
Collapse
|
10
|
Zhang X, Cai M, Guo L, Zhang Z, Shen B, Zhang X, Hu Z, Tian J. Attention mechanism-based locally connected network for accurate and stable reconstruction in Cerenkov luminescence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7703-7716. [PMID: 35003861 PMCID: PMC8713679 DOI: 10.1364/boe.443517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cerenkov luminescence tomography (CLT) is a novel and highly sensitive imaging technique, which could obtain the three-dimensional distribution of radioactive probes to achieve accurate tumor detection. However, the simplified radiative transfer equation and ill-conditioned inverse problem cause a reconstruction error. In this study, a novel attention mechanism based locally connected (AMLC) network was proposed to reduce barycenter error and improve morphological restorability. The proposed AMLC network consisted of two main parts: a fully connected sub-network for providing a coarse reconstruction result, and a locally connected sub-network based on an attention matrix for refinement. Both numerical simulations and in vivo experiments were conducted to show the superiority of the AMLC network in accuracy and stability over existing methods (MFCNN, KNN-LC network). This method improved CLT reconstruction performance and promoted the application of machine learning in optical imaging research.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Equal contribution
| | - Meishan Cai
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Equal contribution
| | - Lishuang Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Biluo Shen
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
12
|
Yin L, Wang K, Tong T, Wang Q, An Y, Yang X, Tian J. Adaptive Grouping Block Sparse Bayesian Learning Method for Accurate and Robust Reconstruction in Bioluminescence Tomography. IEEE Trans Biomed Eng 2021; 68:3388-3398. [PMID: 33830917 DOI: 10.1109/tbme.2021.3071823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Bioluminescence tomography (BLT) is a promising modality that is designed to provide non-invasive quantitative three-dimensional information regarding the tumor distribution in living animals. However, BLT suffers from inferior reconstructions due to its ill-posedness. This study aims to improve the reconstruction performance of BLT. METHODS We propose an adaptive grouping block sparse Bayesian learning (AGBSBL) method, which incorporates the sparsity prior, correlation of neighboring mesh nodes, and anatomical structure prior to balance the sparsity and morphology in BLT. Specifically, an adaptive grouping prior model is proposed to adjust the grouping according to the intensity of the mesh nodes during the optimization process. RESULTS Numerical simulations and in vivo experiments demonstrate that AGBSBL yields a high position and morphology recovery accuracy, stability, and practicality. CONCLUSION The proposed method is a robust and effective reconstruction algorithm for BLT. Moreover, the proposed adaptive grouping strategy can further increase the practicality of BLT in biomedical applications.
Collapse
|
13
|
Meng H, Gao Y, Yang X, Wang K, Tian J. K-Nearest Neighbor Based Locally Connected Network for Fast Morphological Reconstruction in Fluorescence Molecular Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3019-3028. [PMID: 32286961 DOI: 10.1109/tmi.2020.2984557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescence molecular tomography (FMT) is a highly sensitive and noninvasive imaging modality for three-dimensional visualization of fluorescence probe distribution in small animals. However, the simplified photon propagation model and ill-posed inverse problem limit the improvement of FMT reconstruction. In this work, we proposed a novel K-nearest neighbor based locally connected (KNN-LC) network to improve the performance of morphological reconstruction in FMT. It directly builds the inverse process of photon transmission by learning the mapping relation between the surface photon intensity and the distribution of fluorescent source. KNN-LC network cascades a fully connected (FC) sub-network with a locally connected (LC) sub-network, where the FC part provides a coarse reconstruction result and LC part fine-tunes the morphological quality of reconstructed result. To assess the performance of our proposed network, we implemented both numerical simulation and in vivo studies. Furthermore, split Bregman-resolved total variation (SBRTV) regularization method and inverse problem simulation (IPS) method were utilized as baselines in all comparisons. The results demonstrated that KNN-LC network achieved accurate reconstruction in both source localization and morphology recovery in a short time. This promoted the in vivo application of FMT for visualizing the distribution of biomarkers inside biological tissue.
Collapse
|
14
|
Cai M, Zhang Z, Shi X, Yang J, Hu Z, Tian J. Non-Negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3207-3217. [PMID: 32324543 DOI: 10.1109/tmi.2020.2987640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerenkov luminescence tomography (CLT) is a promising imaging tool for obtaining three-dimensional (3D) non-invasive visualization of the in vivo distribution of radiopharmaceuticals. However, the reconstruction performance remains unsatisfactory for biomedical applications because the inverse problem of CLT is severely ill-conditioned and intractable. In this study, therefore, a novel non-negative iterative convex refinement (NNICR) approach was utilized to improve the CLT reconstruction accuracy, robustness as well as the shape recovery capability. The spike and slab prior information was employed to capture the sparsity of Cerenkov source, which could be formalized as a non-convex optimization problem. The NNICR approach solved this non-convex problem by refining the solutions of the convex sub-problems. To evaluate the performance of the NNICR approach, numerical simulations and in vivo tumor-bearing mice models experiments were conducted. Conjugated gradient based Tikhonov regularization approach (CG-Tikhonov), fast iterative shrinkage-thresholding algorithm based Lasso approach (Fista-Lasso) and Elastic-Net regularization approach were used for the comparison of the reconstruction performance. The results of these experiments demonstrated that the NNICR approach obtained superior reconstruction performance in terms of location accuracy, shape recovery capability, robustness and in vivo practicability. It was believed that this study would facilitate the preclinical and clinical applications of CLT in the future.
Collapse
|
15
|
Yu J, Tang Q, Li Q, Guo H, He X. Hybrid reconstruction method for multispectral bioluminescence tomography with log-sum regularization. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1060-1066. [PMID: 32543609 DOI: 10.1364/josaa.386961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Bioluminescence tomography (BLT) has important applications in the in vivo visualization of a pathological process for preclinical studies. However, the reconstruction of BLT is severely ill-posed. To recover the bioluminescence source stably and efficiently, we use a log-sum regularization term in the objective function and utilize a hybrid optimization algorithm for solving the nonconvex regularized problems (HONOR). The hybrid optimization scheme of HONOR merges second-order information and first-order information to reconstruction by choosing either the quasi-Newton (QN) or gradient descent step at each iteration. The QN step uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) to acquire second-order information. Simulations and in vivo experiments based on multispectral measurements demonstrated the remarkable performance of the proposed hybrid method in the sparse reconstruction of BLT.
Collapse
|
16
|
Precise visual distinction of brain glioma from normal tissues via targeted photoacoustic and fluorescence navigation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102204. [PMID: 32294568 DOI: 10.1016/j.nano.2020.102204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022]
Abstract
The vexing difficulty in distinguishing glioma from normal tissues is a major obstacle to prognosis. In an attempt to solve this problem, we used a joint strategy that combined targeted-cancer stem cells nanoparticles with precise photoacoustic and fluorescence navigation. We showed that traditional magnetic resonance imaging (MRI) did not represent the true morphology of tumors. Targeted nanoparticles specifically accumulated in the tumor area. Glioma was precisely revealed at the cellular level. Tumors could be non-invasively detected through the intact skull by fluorescence molecular imaging (FMI) and photoacoustic tomography (PAT). Moreover, PAT can be used to excise deep gliomas. Histological correlation confirmed that FMI imaging accurately delineated scattered tumor cells. The combination of optical PAT and FMI navigation fulfilled the promise of precise visual imaging in glioma detection and resection. This detection method was deeper and more intuitive than the current intraoperative pathology.
Collapse
|
17
|
Guo H, Gao L, Yu J, He X, Wang H, Zheng J, Yang X. Sparse-graph manifold learning method for bioluminescence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960218. [PMID: 31990430 DOI: 10.1002/jbio.201960218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
In preclinical researches, bioluminescence tomography (BLT) has widely been used for tumor imaging and monitoring, imaged-guided tumor therapy, and so forth. For these biological applications, both tumor spatial location and morphology analysis are the leading problems needed to be taken into account. However, most existing BLT reconstruction methods were proposed for some specific applications with a focus on sparse representation or morphology recovery, respectively. How to design a versatile algorithm that can simultaneously deal with both aspects remains an impending problem. In this study, a Sparse-Graph Manifold Learning (SGML) method was proposed to balance the source sparseness and morphology, by integrating non-convex sparsity constraint and dynamic Laplacian graph model. Furthermore, based on the nonconvex optimization theory and some iterative approximation, we proposed a novel iteratively reweighted soft thresholding algorithm (IRSTA) to solve the SGML model. Numerical simulations and in vivo experiments result demonstrated that the proposed SGML method performed much superior to the comparative methods in spatial localization and tumor morphology recovery for various source settings. It is believed that the SGML method can be applied to the related optical tomography and facilitate the development of optical molecular tomography.
Collapse
Affiliation(s)
- Hongbo Guo
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an, China
| | - Ling Gao
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Xi'an Polytechnic University, Xi'an, China
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
| | - Hai Wang
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an, China
| | - Jie Zheng
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an, China
| | - Xudong Yang
- School of Information Sciences and Technology, Northwest University, Xi'an, China
- The State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an, China
| |
Collapse
|
18
|
Kong L, An Y, Liang Q, Yin L, Du Y, Tian J. Reconstruction for Fluorescence Molecular Tomography via Adaptive Group Orthogonal Matching Pursuit. IEEE Trans Biomed Eng 2020; 67:2518-2529. [PMID: 31905129 DOI: 10.1109/tbme.2019.2963815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Fluorescence molecular tomography (FMT) is a promising medical imaging technology aimed at the non-invasive, specific, and sensitive detection of the distribution of fluorophore. Conventional sparsity prior-based methods of FMT commonly face problems such as over-sparseness, spatial discontinuity, and poor robustness, due to the neglect of the interrelation within the local subspace. To address this, we propose an adaptive group orthogonal matching pursuit (AGOMP) method. METHODS AGOMP is based on a novel local spatial-structured sparse regularization, which leverages local spatial interrelations as group sparsity without the hard prior of the tumor region. The adaptive grouped subspace matching pursuit method was adopted to enhance the interrelatedness of elements within a group, which alleviates the over-sparsity problem to some extent and improves the accuracy, robustness, and morphological similarity of FMT reconstruction. A series of numerical simulation experiments, based on digital mouse with both one and several tumors, were conducted, as well as in vivo mouse experiments. RESULTS The results demonstrated that the proposed AGOMP method achieved better location accuracy, fluorescent yield reconstruction, relative sparsity, and morphology than state-of-the-art methods under complex conditions for levels of Gaussian noise ranging from 5-25%. Furthermore, the in vivo mouse experiments demonstrated the practical application of FMT with AGOMP. CONCLUSION The proposed AGOMP can improve the accuracy and robustness for FMT reconstruction in biomedical application.
Collapse
|
19
|
An Y, Meng H, Gao Y, Tong T, Zhang C, Wang K, Tian J. Application of machine learning method in optical molecular imaging: a review. SCIENCE CHINA INFORMATION SCIENCES 2020; 63:111101. [DOI: 10.1007/s11432-019-2708-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/22/2019] [Indexed: 08/30/2023]
|
20
|
Gao P, Rong J, Liu T, Zhang W, Lan B, Ouyang X, Lu H. Limited view cone-beam x-ray luminescence tomography based on depth compensation and group sparsity prior. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 31970943 PMCID: PMC6975372 DOI: 10.1117/1.jbo.25.1.016004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
Significance: As a promising hybrid imaging technique with x-ray excitable nanophosphors, cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed for in-depth biological imaging applications. In situations in which the full rotation of the imaging object (or x-ray source) is inapplicable, the x-ray excitation is limited by geometry, or a lower x-ray excitation dose is mandatory, limited view CB-XLCT reconstruction would be essential. However, this will result in severe ill-posedness and poor image quality. <p> Aim: The aim is to develop a limited view CB-XLCT imaging strategy to reduce the scanning span and a corresponding reconstruction method to achieve robust imaging performance.</p> <p> Approach: In this study, a group sparsity-based reconstruction method is proposed with the consideration that nanophosphors usually cluster in certain regions, such as tumors or major organs such as the liver. In addition, depth compensation (DC) is adopted to avoid the depth inconsistency caused by a limited view strategy. </p> <p> Results: Experiments using numerical simulations and physical phantoms with different edge-to-edge distances were carried out to illustrate the validity of the proposed method. The reconstruction results showed that the proposed method outperforms conventional methods in terms of localization accuracy, target shape, image contrast, and spatial resolution with two perpendicular projections. </p> <p> Conclusions: A limited view CB-XLCT imaging strategy with two perpendicular projections and a reconstruction method based on DC and group sparsity, which is essential for fast CB-XLCT imaging and for some practical imaging applications, such as imaging-guided surgery, is proposed. </p>
Collapse
Affiliation(s)
- Peng Gao
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
| | - Junyan Rong
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
| | - Tianshuai Liu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
| | - Wenli Zhang
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
| | - Bin Lan
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
| | - Xiaoping Ouyang
- Northwest Institute of Nuclear Technology, Xi’an, Shaanxi, China
- Address all correspondence to Hongbing Lu, E-mail: ; Xiaoping Ouyang, E-mail:
| | - Hongbing Lu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi’an, Shaanxi, China
- Address all correspondence to Hongbing Lu, E-mail: ; Xiaoping Ouyang, E-mail:
| |
Collapse
|
21
|
Meng H, Wang K, Gao Y, Jin Y, Ma X, Tian J. Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2726-2734. [PMID: 31021763 DOI: 10.1109/tmi.2019.2912222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescence molecular tomography (FMT), as a powerful imaging technique in preclinical research, can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labelled probe noninvasively. However, because of the light scattering effect and the ill-pose of inverse problem, it is challenging to develop an efficient reconstruction method, which can provide accurate location and morphology of the fluorescence distribution. In this research, we proposed a novel adaptive Gaussian weighted Laplace prior (AGWLP) regularization method, which assumed the variance of fluorescence intensity between any two voxels had a non-linear correlation with their Gaussian distance. It utilized an adaptive Gaussian kernel parameter strategy to achieve accurate morphological reconstructions in FMT. To evaluate the performance of the AGWLP method, we conducted numerical simulation and in vivo experiments. The results were compared with fast iterative shrinkage (FIS) thresholding method, split Bregman-resolved TV (SBRTV) regularization method, and Gaussian weighted Laplace prior (GWLP) regularization method. We validated in vivo imaging results against planar fluorescence images of frozen sections. The results demonstrated that the AGWLP method achieved superior performance in both location and shape recovery of fluorescence distribution. This enabled FMT more suitable and practical for in vivo visualization of biomarkers.
Collapse
|
22
|
Yin L, Wang K, Tong T, An Y, Meng H, Yang X, Tian J. Improved Block Sparse Bayesian Learning Method Using K-Nearest Neighbor Strategy for Accurate Tumor Morphology Reconstruction in Bioluminescence Tomography. IEEE Trans Biomed Eng 2019; 67:2023-2032. [PMID: 31751214 DOI: 10.1109/tbme.2019.2953732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Bioluminescence tomography (BLT) is a non-invasive technique designed to enable three-dimensional (3D) visualization and quantification of viable tumor cells in living organisms. However, despite the excellent sensitivity and specificity of bioluminescence imaging (BLI), BLT is limited by the photon scattering effect and ill-posed inverse problem. If the complete structural information of a light source is considered when solving the inverse problem, reconstruction accuracy will be improved. METHODS This article proposed a block sparse Bayesian learning method based on K-nearest neighbor strategy (KNN-BSBL), which incorporated several types of a priori information including sparsity, spatial correlations among neighboring points, and anatomical information to balance over-sparsity and morphology preservation in BLT. Furthermore, we considered the Gaussian weighted distance prior in a light source and proposed a KNN-GBSBL method to further improve the performance of KNN-BSBL. RESULTS The results of numerical simulations and in vivo glioma-bearing mouse experiments demonstrated that KNN-BSBL and KNN-GBSBL achieved superior accuracy for tumor spatial positioning and morphology reconstruction. CONCLUSION The proposed method KNN-BSBL incorporated several types of a priori information is an efficient and robust reconstruction method for BLT.
Collapse
|
23
|
Jiang S, Liu J, An Y, Gao Y, Meng H, Wang K, Tian J. Fluorescence Molecular Tomography Based on Group Sparsity Priori for Morphological Reconstruction of Glioma. IEEE Trans Biomed Eng 2019; 67:1429-1437. [PMID: 31449004 DOI: 10.1109/tbme.2019.2937354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Fluorescence molecular tomography (FMT) is an important tool for life science, which can noninvasive real-time three-dimensional (3-D) visualization for fluorescence source location. FMT is widely used in tumor research due to its high-sensitive and low cost. However, the reconstruction of FMT is difficult. Although the reconstruction methods of FMT have developed rapidly in recent years, the morphological reconstruction of FMT is still a challenge problem. Thus, the purpose of this study is to realize the morphological reconstruction performance of FMT in glioma research. METHODS In this study, group sparsity was used as a new priori information for FMT. Besides sparsity, group sparsity also takes the group structure of the fluorescent sources, which can maintain the morphological information of the sources. Fused LASSO method (FLM) was proved it can efficiently model the group sparsity prior. Thus, we utilize FLM to reconstruct the morphological information of glioma. Furthermore, to reduce the influence of the high scattering of skull, we modified the FLM for improving the accuracy of morphological reconstruction. RESULTS Glioma numerical simulation model and in vivo glioma model were established to evaluate the performance of morphological reconstruction of the proposed method. The results demonstrated that the proposed method was efficient to reconstruct the morphological information of glioma. CONCLUSION Group sparsity priori can effectively improve the morphological accuracy of FMT reconstruction. SIGNIFICANCE Group sparsity can maintain the morphological information of fluorescent sources effectively, which has great application potential in FMT. The group sparsity based methods can realize the morphological reconstruction, which is of great practical significance in tumor research.
Collapse
|
24
|
Liang Q, Kong L, Du Y, Zhu X, Tian J. Antitumorigenic and antiangiogenic efficacy of apatinib in liver cancer evaluated by multimodality molecular imaging. Exp Mol Med 2019; 51:1-11. [PMID: 31285418 PMCID: PMC6802662 DOI: 10.1038/s12276-019-0274-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Sorafenib is the standard first-line treatment for advanced HCC, but its efficacy is limited. Apatinib is a small-molecule tyrosine kinase inhibitor that has shown promising antitumor effects in gastric and non-small cell lung cancers in clinical trials, but there have been only a few studies reporting its anti-HCC effects in vitro and in HCC xenograft models. Hence, our present study systemically investigated and compared the antitumorigenic and antiangiogenic efficacy of apatinib and sorafenib in HCC in vitro and in vivo using multimodality molecular imaging, including bioluminescence imaging (BLI), bioluminescence tomography (BLT), fluorescence molecular imaging (FMI), and computed tomography angiography (CTA). Moreover, the safety and side effects of the two drugs were systemically evaluated. We found that apatinib showed a comparable therapeutic efficacy to sorafenib for the inhibition of HCC. The drug safety evaluation revealed that both of these drugs caused hypertension and mild liver and kidney damage. Sorafenib caused diarrhea, rash, and weight loss in mice, but these effects were not observed in mice treated with apatinib. In conclusion, apatinib has similar antitumorigenic and antiangiogenic efficacy as sorafenib in HCC with less toxicity. These findings may provide preclinical evidence supporting the potential application of apatinib for the treatment of HCC patients. Researchers have combined different sophisticated imaging techniques to assess the safety and efficacy of liver cancer therapy in animal models. Many hepatocellular carcinoma (HCC) patients respond to sorafenib, but this drug is expensive and may cause severe side-effects. Qian Liang at China’s Institute of Automation, Beijing, and colleagues have employed cutting-edge imaging technologies to study an alternative drug, apatinib, which has shown promise for stomach and lung cancer and has an excellent safety profile. Using bioluminescence imaging, the researchers could directly visualize apatanib-mediated inhibition of tumor growth in live mice much earlier than would be possible with other methods. The researchers subsequently used additional imaging techniques to demonstrate that apatanib inhibits tumor blood vessel growth. These findings reveal a promising alternative treatment for HCC, as well as a powerful strategy for drug testing in animals.
Collapse
Affiliation(s)
- Qian Liang
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100080, Beijing, China.,Beijing Key Laboratory of Molecular Imaging, 100190, Beijing, China
| | - Lingxin Kong
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100080, Beijing, China.,Beijing Key Laboratory of Molecular Imaging, 100190, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100080, Beijing, China. .,Beijing Key Laboratory of Molecular Imaging, 100190, Beijing, China.
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University School of Oncology, No. 52 Fucheng Road, Haidian District, 100142, Beijing, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100080, Beijing, China. .,Beijing Key Laboratory of Molecular Imaging, 100190, Beijing, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, 100191, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
25
|
Jiang S, Liu J, Zhang G, An Y, Meng H, Gao Y, Wang K, Tian J. Reconstruction of Fluorescence Molecular Tomography via a Fused LASSO Method Based on Group Sparsity Prior. IEEE Trans Biomed Eng 2018; 66:1361-1371. [PMID: 30281432 DOI: 10.1109/tbme.2018.2872913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this paper is to improve the reconstruction accuracy in both position and source region of fluorescence molecular tomography (FMT). METHODS The reconstruction of the FMT is challenging due to its serious ill-posedness and ill-condition. Currently, to obtain the fluorescent sources accurately, more a priori information of the fluorescent sources is utilized and more efficient and practical methods are proposed. In this paper, we took the group sparsity of the fluorescent sources as a new type of priori information in the FMT, and proposed the fused LASSO method (FLM) for FMT. The FLM based on group sparsity prior not only takes advantage of the sparsity of the fluorescent sources, but also utilizes the structure of the sources, thus making the reconstruction results more accuracy and morphologically similar to the sources. To further improve the reconstruction efficiency, we adopt Nesterov's method to solve the FLM. RESULTS Both heterogeneous numerical simulation experiments and in vivo mouse experiments were carried out to verify the property of the FLM. The results have verified the superiority of the FLM over conventional methods in tumor detection and tumor morphological reconstruction. Furthermore, the in vivo experiments had demonstrated that the FLM has great potential in preclinical application of the FMT. SIGNIFICANCE The reconstruction method based on group sparsity prior has a great potential in the FMT study, it can further improve the reconstruction quality, which has practical significance in preclinical research.
Collapse
|
26
|
Gao Y, Wang K, Jiang S, Liu Y, Ai T, Tian J. Corrections for "Bioluminescence Tomography Based on Gaussian Weighted Laplace Prior Regularization for Morphological Imaging of Glioma". IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2161. [PMID: 30183616 DOI: 10.1109/tmi.2018.2861038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In [1], the affiliation for Y. Gao, K. Wang and J. Tian should have appeared as follows:.
Collapse
|
27
|
Dehghani H, Guggenheim JA, Taylor SL, Xu X, Wang KKH. Quantitative bioluminescence tomography using spectral derivative data. BIOMEDICAL OPTICS EXPRESS 2018; 9:4163-4174. [PMID: 30615705 PMCID: PMC6157772 DOI: 10.1364/boe.9.004163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 05/15/2023]
Abstract
Bioluminescence imaging (BLI) is a non-contact, optical imaging technique based on measurement of emitted light due to an internal source, which is then often directly related to cellular activity. It is widely used in pre-clinical small animal imaging studies to assess the progression of diseases such as cancer, aiding in the development of new treatments and therapies. For many applications, the quantitative assessment of accurate cellular activity and spatial distribution is desirable as it would enable direct monitoring for prognostic evaluation. This requires quantitative spatially-resolved measurements of bioluminescence source strength inside the animal to be obtained from BLI images. This is the goal of bioluminescence tomography (BLT) in which a model of light propagation through tissue is combined with an optimization algorithm to reconstruct a map of the underlying source distribution. As most models consider only the propagation of light from internal sources to the animal skin surface, an additional challenge is accounting for the light propagation from the skin to the optical detector (e.g. camera). Existing approaches typically use a model of the imaging system optics (e.g. ray-tracing, analytical optical models) or approximate corrections derived from calibration measurements. However, these approaches are typically computationally intensive or of limited accuracy. In this work, a new approach is presented in which, rather than directly using BLI images acquired at several wavelengths, the spectral derivative of that data (difference of BLI images at adjacent wavelengths) is used in BLT. As light at similar wavelengths encounters a near-identical system response (path through the optics etc.) this eliminates the need for additional corrections or system models. This approach is applied to BLT with simulated and experimental phantom data and shown that the error in reconstructed source intensity is reduced from 49% to 4%. Qualitatively, the accuracy of source localization is improved in both simulated and experimental data, as compared to reconstruction using the standard approach. The outlined algorithm can widely be adapted to all commercial systems without any further technological modifications.
Collapse
Affiliation(s)
- Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - James A. Guggenheim
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Shelley L. Taylor
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xiangkun Xu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Gao Y, Wang K, Jiang S, Liu Y, Ai T, Tian J. Corrections to "Bioluminescence Tomography Based on Gaussian Weighted Laplace Prior Regularization for Morphological Imaging of Glioma". IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1733. [PMID: 29969423 DOI: 10.1109/tmi.2018.2845038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The correct affiliation for Yuan Gao, Kun Wang, and Jie Tian is as follows.
Collapse
|
29
|
Liu T, Rong J, Gao P, Zhang W, Liu W, Zhang Y, Lu H. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29473348 DOI: 10.1117/1.jbo.23.2.026006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.
Collapse
Affiliation(s)
- Tianshuai Liu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Junyan Rong
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Peng Gao
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Wenli Zhang
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Wenlei Liu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Yuanke Zhang
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| | - Hongbing Lu
- Fourth Military Medical University, Department of Biomedical Engineering, Xi'an, Shaanxi, China
| |
Collapse
|