1
|
Yang Y, Zhang B, Lu M, Yan X. Dual-tuned floating solenoid balun for multi-nuclear MRI and MRS. Magn Reson Imaging 2024; 115:110268. [PMID: 39442656 DOI: 10.1016/j.mri.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Common-mode currents can degrade the RF coil performance and introduce potential safety hazards in MRI. Baluns are the standard method to suppress these undesired common-mode currents. Specifically, floating baluns are preferred in many applications because they are removable, allow post-installation adjustment and avoid direct soldering on the cable. However, floating baluns are typically bulky to achieve excellent common-mode suppression, taking up valuable space in the MRI bore. This is particularly severe for multi-nuclear MRI/MRS applications, as two RF systems exist. In this work, we present a novel dual-tuned floating balun that is fully removable, does not require any physical connection to the coaxial cable, and has a significantly reduced footprint. The floating design employs an inductive coupling between the cable solenoid and a floating solenoid resonator rather than a direct physical connection. Unlike the previous floating solenoid balun, this balun employs a two-layer design further to improve the mutual coupling between the two solenoids. A pole-insertion method is used to suppress common-mode currents at two user-selectable frequencies simultaneously. Bench testing of the fabricated device at 7 T demonstrated high common-mode rejection ratios at Larmor frequencies of both 1H and 23Na, even with a compact dimension (diameter 18 mm and length 12 mm). This balun's removable, compact, and multi-resonant nature enables light-weighting, allows more coil elements, and improves cable management for advanced multi-nuclear MRI/MRS systems.
Collapse
Affiliation(s)
- Yijin Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Boqiao Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
3
|
Quan Z, Yang Z, Tang X, Fu C, Zhou X, Huang L, Xia L, Zhang X. A double-tuned 1 H/ 31 P coil for rabbit heart metabolism detection at 3 T. NMR IN BIOMEDICINE 2024; 37:e5049. [PMID: 37767723 DOI: 10.1002/nbm.5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) employing proton nuclear resonance has emerged as a pivotal modality in clinical diagnostics and fundamental research. Nonetheless, the scope of MRI/MRS extends beyond protons, encompassing nonproton nuclei that offer enhanced metabolic insights. A notable example is phosphorus-31 (31 P) MRS, which provides valuable information on energy metabolites within the skeletal muscle and cardiac tissues of individuals affected by diabetes. This study introduces a novel double-tuned coil tailored for 1 H and 31 P frequencies, specifically designed for investigating cardiac metabolism in rabbits. The proposed coil design incorporates a butterfly-like coil for 31 P transmission, a four-channel array for 31 P reception, and an eight-channel array for 1 H reception, all strategically arranged on a body-conformal elliptic cylinder. To assess the performance of the double-tuned coil, a comprehensive evaluation encompassing simulations and experimental investigations was conducted. The simulation results demonstrated that the proposed 31 P transmit design achieved acceptable homogeneity and exhibited comparable transmit efficiency on par with a band-pass birdcage coil. In vivo experiments further substantiated the coil's efficacy, revealing that the rabbit with experimentally induced diabetes exhibited a lower phosphocreatine/adenosine triphosphate ratio compared with its normal counterpart. These findings emphasize the potential of the proposed coil design as a promising tool for investigating the therapeutic effects of novel diabetes drugs within the context of animal experimentation. Its capability to provide detailed metabolic information establishes it as an indispensable asset within this realm of research.
Collapse
Affiliation(s)
- Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhaoxia Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocui Tang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Xiaoyue Zhou
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
5
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
6
|
Zhu Y, Sappo CR, Grissom WA, Gore JC, Yan X. Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1420-1430. [PMID: 34990352 PMCID: PMC9812758 DOI: 10.1109/tmi.2022.3140717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Balun or trap circuits are critical components for suppressing common-mode currents flowing on the outer conductors of coaxial cables in RF coil systems for Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS). Common-mode currents affect coils' tuning and matching, induce losses, pick up extra noise from the surrounding environment, lead to undesired cross-talk, and cause safety concerns in animal and human imaging. First proposed for microwave antenna applications, the Lattice balun has been widely used in MRI coils. It has a small footprint and can be easily integrated with coil tuning/matching circuits. However, the Lattice balun is typically a single-tuned circuit and cannot be used for multi-nuclear MRI and MRS with two RF frequencies. This work describes a dual-tuned Lattice balun design that is suitable for multi-nuclear MRI/MRS. It was first analyzed theoretically to derive component values. RF circuit simulations were then performed to validate the theoretical analysis and provide guidance for practical construction. Based on the simulation results, a dual-tuned balun circuit was built for 7T 1H/23Na MRI and bench tested. The fabricated dual-tuned balun exhibits superior performance at the Larmor frequencies of both 1H and 23Na, with less than 0.15 dB insertion loss and better than 17 dB common-mode rejection ratio at both frequencies.
Collapse
|
7
|
Wilcox M, Wright SM, McDougall M. A Review of Non- 1H RF Receive Arrays in Magnetic Resonance Imaging and Spectroscopy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:290-300. [PMID: 35402958 PMCID: PMC8975242 DOI: 10.1109/ojemb.2020.3030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is now common practice to use radiofrequency (RF) coils to increase the signal-to-noise ratio (SNR) in 1H magnetic resonance imaging and spectroscopy experiments. Use of array coils for non-1H experiments, however, has been historically more limited despite the fact that these nuclei suffer inherently lower sensitivity and could benefit greatly from an increased SNR. Recent advancements in receiver technology and increased support from scanner manufacturers have now opened greater options for the use of array coils for non-1H magnetic resonance experiments. This paper reviews the research in adopting array coil technology with an emphasis on studies of the most commonly studied non-1H nuclei including 31P, 13C, 23Na, and 19F. These nuclei offer complementary information to 1H imaging and spectroscopy and have proven themselves important in the study of numerous disease processes. While recent work with non-1H array coils has shown promising results, the technology is not yet widely utilized and should see substantial developments in the coming years.
Collapse
|
8
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
9
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|