1
|
Wu C, Chen Q, Wang H, Guan Y, Mian Z, Huang C, Ruan C, Song Q, Jiang H, Pan J, Li X. A review of deep learning approaches for multimodal image segmentation of liver cancer. J Appl Clin Med Phys 2024:e14540. [PMID: 39374312 DOI: 10.1002/acm2.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 10/09/2024] Open
Abstract
This review examines the recent developments in deep learning (DL) techniques applied to multimodal fusion image segmentation for liver cancer. Hepatocellular carcinoma is a highly dangerous malignant tumor that requires accurate image segmentation for effective treatment and disease monitoring. Multimodal image fusion has the potential to offer more comprehensive information and more precise segmentation, and DL techniques have achieved remarkable progress in this domain. This paper starts with an introduction to liver cancer, then explains the preprocessing and fusion methods for multimodal images, then explores the application of DL methods in this area. Various DL architectures such as convolutional neural networks (CNN) and U-Net are discussed and their benefits in multimodal image fusion segmentation. Furthermore, various evaluation metrics and datasets currently used to measure the performance of segmentation models are reviewed. While reviewing the progress, the challenges of current research, such as data imbalance, model generalization, and model interpretability, are emphasized and future research directions are suggested. The application of DL in multimodal image segmentation for liver cancer is transforming the field of medical imaging and is expected to further enhance the accuracy and efficiency of clinical decision making. This review provides useful insights and guidance for medical practitioners.
Collapse
Affiliation(s)
- Chaopeng Wu
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qiyao Chen
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Haoyu Wang
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yu Guan
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhangyang Mian
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Cong Huang
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Changli Ruan
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qibin Song
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Hao Jiang
- School of Electronic Information, Wuhan University, Wuhan, Hubei, China
| | - Jinghui Pan
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- School of Electronic Information, Wuhan University, Wuhan, Hubei, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Yang G, Zhang L, Liu A, Fu X, Chen X, Wang R. MGDUN: An interpretable network for multi-contrast MRI image super-resolution reconstruction. Comput Biol Med 2023; 167:107605. [PMID: 37925907 DOI: 10.1016/j.compbiomed.2023.107605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Magnetic resonance imaging (MRI) Super-Resolution (SR) aims to obtain high resolution (HR) images with more detailed information for precise diagnosis and quantitative image analysis. Deep unfolding networks outperform general MRI SR reconstruction methods by providing better performance and improved interpretability, which enhance the trustworthiness required in clinical practice. Additionally, current SR reconstruction techniques often rely on a single contrast or a simple multi-contrast fusion mechanism, ignoring the complex relationships between different contrasts. To address these issues, in this paper, we propose a Model-Guided multi-contrast interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction, which explicitly incorporates the well-studied multi-contrast MRI observation model into an unfolding iterative network. Specifically, we manually design an objective function for MGDUN that can be iteratively computed by the half-quadratic splitting algorithm. The iterative MGDUN algorithm is unfolded into a special model-guided deep unfolding network that explicitly takes into account both the multi-contrast relationship matrix and the MRI observation matrix during the end-to-end optimization process. Extensive experimental results on the multi-contrast IXI dataset and the BraTs 2019 dataset demonstrate the superiority of our proposed model, with PSNR reaching 37.3366 and 35.9690 respectively. Our proposed MGDUN provides a promising solution for multi-contrast MR image super-resolution reconstruction. Code is available at https://github.com/yggame/MGDUN.
Collapse
Affiliation(s)
- Gang Yang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Li Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China; Institute of Intelligent Machines, and Hefei Institute of Physical Science, Chinese Academy Sciences, Hefei 230031, China
| | - Aiping Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Xueyang Fu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xun Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Rujing Wang
- Institute of Intelligent Machines, and Hefei Institute of Physical Science, Chinese Academy Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Azuri I, Wattad A, Peri-Hanania K, Kashti T, Rosen R, Caspi Y, Istaiti M, Wattad M, Applbaum Y, Zimran A, Revel-Vilk S, C. Eldar Y. A Deep-Learning Approach to Spleen Volume Estimation in Patients with Gaucher Disease. J Clin Med 2023; 12:5361. [PMID: 37629403 PMCID: PMC10455264 DOI: 10.3390/jcm12165361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The enlargement of the liver and spleen (hepatosplenomegaly) is a common manifestation of Gaucher disease (GD). An accurate estimation of the liver and spleen volumes in patients with GD, using imaging tools such as magnetic resonance imaging (MRI), is crucial for the baseline assessment and monitoring of the response to treatment. A commonly used method in clinical practice to estimate the spleen volume is the employment of a formula that uses the measurements of the craniocaudal length, diameter, and thickness of the spleen in MRI. However, the inaccuracy of this formula is significant, which, in turn, emphasizes the need for a more precise and reliable alternative. To this end, we employed deep-learning techniques, to achieve a more accurate spleen segmentation and, subsequently, calculate the resulting spleen volume with higher accuracy on a testing set cohort of 20 patients with GD. Our results indicate that the mean error obtained using the deep-learning approach to spleen volume estimation is 3.6 ± 2.7%, which is significantly lower than the common formula approach, which resulted in a mean error of 13.9 ± 9.6%. These findings suggest that the integration of deep-learning methods into the clinical routine practice for spleen volume calculation could lead to improved diagnostic and monitoring outcomes.
Collapse
Affiliation(s)
- Ido Azuri
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ameer Wattad
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Keren Peri-Hanania
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Kashti
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronnie Rosen
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaron Caspi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Makram Wattad
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Yaakov Applbaum
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Osuala R, Kushibar K, Garrucho L, Linardos A, Szafranowska Z, Klein S, Glocker B, Diaz O, Lekadir K. Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging. Med Image Anal 2023; 84:102704. [PMID: 36473414 DOI: 10.1016/j.media.2022.102704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Despite technological and medical advances, the detection, interpretation, and treatment of cancer based on imaging data continue to pose significant challenges. These include inter-observer variability, class imbalance, dataset shifts, inter- and intra-tumour heterogeneity, malignancy determination, and treatment effect uncertainty. Given the recent advancements in image synthesis, Generative Adversarial Networks (GANs), and adversarial training, we assess the potential of these technologies to address a number of key challenges of cancer imaging. We categorise these challenges into (a) data scarcity and imbalance, (b) data access and privacy, (c) data annotation and segmentation, (d) cancer detection and diagnosis, and (e) tumour profiling, treatment planning and monitoring. Based on our analysis of 164 publications that apply adversarial training techniques in the context of cancer imaging, we highlight multiple underexplored solutions with research potential. We further contribute the Synthesis Study Trustworthiness Test (SynTRUST), a meta-analysis framework for assessing the validation rigour of medical image synthesis studies. SynTRUST is based on 26 concrete measures of thoroughness, reproducibility, usefulness, scalability, and tenability. Based on SynTRUST, we analyse 16 of the most promising cancer imaging challenge solutions and observe a high validation rigour in general, but also several desirable improvements. With this work, we strive to bridge the gap between the needs of the clinical cancer imaging community and the current and prospective research on data synthesis and adversarial networks in the artificial intelligence community.
Collapse
Affiliation(s)
- Richard Osuala
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain.
| | - Kaisar Kushibar
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| | - Lidia Garrucho
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| | - Akis Linardos
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| | - Zuzanna Szafranowska
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ben Glocker
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK
| | - Oliver Diaz
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain
| |
Collapse
|
5
|
Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly. Cancers (Basel) 2022; 14:cancers14225476. [PMID: 36428569 PMCID: PMC9688308 DOI: 10.3390/cancers14225476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.
Collapse
|
6
|
Chen Y, Xu C, Ding W, Sun S, Yue X, Fujita H. Target-aware U-Net with fuzzy skip connections for refined pancreas segmentation. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Yu Q, Qi L, Gao Y, Wang W, Shi Y. Crosslink-Net: Double-Branch Encoder Network via Fusing Vertical and Horizontal Convolutions for Medical Image Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:5893-5908. [PMID: 36074869 DOI: 10.1109/tip.2022.3203223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate image segmentation plays a crucial role in medical image analysis, yet it faces great challenges caused by various shapes, diverse sizes, and blurry boundaries. To address these difficulties, square kernel-based encoder-decoder architectures have been proposed and widely used, but their performance remains unsatisfactory. To further address these challenges, we present a novel double-branch encoder architecture. Our architecture is inspired by two observations. (1) Since the discrimination of the features learned via square convolutional kernels needs to be further improved, we propose utilizing nonsquare vertical and horizontal convolutional kernels in a double-branch encoder so that the features learned by both branches can be expected to complement each other. (2) Considering that spatial attention can help models to better focus on the target region in a large-sized image, we develop an attention loss to further emphasize the segmentation of small-sized targets. With the above two schemes, we develop a novel double-branch encoder-based segmentation framework for medical image segmentation, namely, Crosslink-Net, and validate its effectiveness on five datasets with experiments. The code is released at https://github.com/Qianyu1226/Crosslink-Net.
Collapse
|
8
|
Unpaired multi-modal tumor segmentation with structure adaptation. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Li D, Peng Y, Guo Y, Sun J. TAUNet: a triple-attention-based multi-modality MRI fusion U-Net for cardiac pathology segmentation. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractAutomated segmentation of cardiac pathology in MRI plays a significant role for diagnosis and treatment of some cardiac disease. In clinical practice, multi-modality MRI is widely used to improve the cardiac pathology segmentation, because it can provide multiple or complementary information. Recently, deep learning methods have presented implausible performance in multi-modality medical image segmentation. However, how to fuse the underlying multi-modality information effectively to segment the pathology with irregular shapes and small region at random locations, is still a challenge task. In this paper, a triple-attention-based multi-modality MRI fusion U-Net was proposed to learn complex relationship between different modalities and pay more attention on shape information, thus to achieve improved pathology segmentation. First, three independent encoders and one fusion encoder were applied to extract specific and multiple modality features. Secondly, we concatenate the modality feature maps and use the channel attention to fuse specific modal information at every stage of the three dedicate independent encoders, then the three single modality feature maps and channel attention feature maps are together concatenated to the decoder path. Spatial attention was adopted in decoder path to capture the correlation of various positions. Once more, we employ shape attention to focus shape-dependent information. Lastly, the training approach is made efficient by introducing deep supervision mechanism with object contextual representations block to ensure precisely boundary prediction. Our proposed network was evaluated on the public MICCAI 2020 Myocardial pathology segmentation dataset which involves patients suffering from myocardial infarction. Experiments on the dataset with three modalities demonstrate the effectiveness of fusion mode of our model, and attention mechanism can integrate various modality information well. We demonstrated that such a deep learning approach could better fuse complementary information to improve the segmentation performance of cardiac pathology.
Collapse
|
10
|
Gong H, Liu J, Chen B, Li S. ResAttenGAN: Simultaneous segmentation of multiple spinal structures on axial lumbar MRI image using residual attention and adversarial learning. Artif Intell Med 2022; 124:102243. [DOI: 10.1016/j.artmed.2022.102243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/18/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022]
|
11
|
Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Bao S, Tang Y, Lee HH, Gao R, Chiron S, Lyu I, Coburn LA, Wilson KT, Roland JT, Landman BA, Huo Y. Random Multi-Channel Image Synthesis for Multiplexed Immunofluorescence Imaging. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2021; 156:36-46. [PMID: 34993490 PMCID: PMC8730359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Multiplex immunofluorescence (MxIF) is an emerging imaging technique that produces the high sensitivity and specificity of single-cell mapping. With a tenet of "seeing is believing", MxIF enables iterative staining and imaging extensive antibodies, which provides comprehensive biomarkers to segment and group different cells on a single tissue section. However, considerable depletion of the scarce tissue is inevitable from extensive rounds of staining and bleaching ("missing tissue"). Moreover, the immunofluorescence (IF) imaging can globally fail for particular rounds ("missing stain"). In this work, we focus on the "missing stain" issue. It would be appealing to develop digital image synthesis approaches to restore missing stain images without losing more tissue physically. Herein, we aim to develop image synthesis approaches for eleven MxIF structural molecular markers (i.e., epithelial and stromal) on real samples. We propose a novel multi-channel high-resolution image synthesis approach, called pixN2N-HD, to tackle possible missing stain scenarios via a high-resolution generative adversarial network (GAN). Our contribution is three-fold: (1) a single deep network framework is proposed to tackle missing stain in MxIF; (2) the proposed "N-to-N" strategy reduces theoretical four years of computational time to 20 hours when covering all possible missing stains scenarios, with up to five missing stains (e.g., "(N-1)-to-1", "(N-2)-to-2"); and (3) this work is the first comprehensive experimental study of investigating cross-stain synthesis in MxIF. Our results elucidate a promising direction of advancing MxIF imaging with deep image synthesis.
Collapse
Affiliation(s)
- Shunxing Bao
- Dept. of Computer Science, Vanderbilt University, USA
| | - Yucheng Tang
- Dept. of Electrical and Computer Engineering, Vanderbilt University, USA
| | - Ho Hin Lee
- Dept. of Computer Science, Vanderbilt University, USA
| | - Riqiang Gao
- Dept. of Computer Science, Vanderbilt University, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, USA
| | - Ilwoo Lyu
- Computer Science & Engineering, Ulsan National Institute of Science and Technology, South Korea
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Dept. of Medicine, Vanderbilt University Medical Center, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Dept. of Medicine, Vanderbilt University Medical Center, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Dept. of Electrical and Computer Engineering, Vanderbilt University, USA
| | - Yuankai Huo
- Dept. of Computer Science, Vanderbilt University, USA
| |
Collapse
|
13
|
Gong H, Liu J, Li S, Chen B. Axial-SpineGAN: simultaneous segmentation and diagnosis of multiple spinal structures on axial magnetic resonance imaging images. Phys Med Biol 2021; 66. [PMID: 33887718 DOI: 10.1088/1361-6560/abfad9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/22/2021] [Indexed: 11/12/2022]
Abstract
Providing a simultaneous segmentation and diagnosis of the spinal structures on axial magnetic resonance imaging (MRI) images has significant value for subsequent pathological analyses and clinical treatments. However, this task remains challenging, owing to the significant structural diversity, subtle differences between normal and abnormal structures, implicit borders, and insufficient training data. In this study, we propose an innovative network framework called 'Axial-SpineGAN' comprising a generator, discriminator, and diagnostor, aiming to address the above challenges, and to achieve simultaneous segmentation and disease diagnosis for discs, neural foramens, thecal sacs, and posterior arches on axial MRI images. The generator employs an enhancing feature fusion module to generate discriminative features, i.e. to address the challenges regarding the significant structural diversity and subtle differences between normal and abnormal structures. An enhancing border alignment module is employed to obtain an accurate pixel classification of the implicit borders. The discriminator employs an adversarial learning module to effectively strengthen the higher-order spatial consistency, and to avoid overfitting owing to insufficient training data. The diagnostor employs an automated diagnosis module to provide automated recognition of spinal diseases. Extensive experiments demonstrate that these modules have positive effects on improving the segmentation and diagnosis accuracies. Additionally, the results indicate that Axial-SpineGAN has the highest Dice similarity coefficient (94.9% ± 1.8%) in terms of the segmentation accuracy and highest accuracy rate (93.9% ± 2.6%) in terms of the diagnosis accuracy, thereby outperforming existing state-of-the-art methods. Therefore, our proposed Axial-SpineGAN is effective and potential as a clinical tool for providing an automated segmentation and disease diagnosis for multiple spinal structures on MRI images.
Collapse
Affiliation(s)
- Hao Gong
- Beijing Institute of Technology, School of Mechanical Engineering, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jianhua Liu
- Beijing Institute of Technology, School of Mechanical Engineering, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Shuo Li
- University of Western, Department of Medical Imaging and Medical Biophysics, London, ON, N6A 5W9, Canada
| | - Bo Chen
- Western University, School of Health Science, London, ON, N6A 4V2, Canada
| |
Collapse
|
14
|
Conze PH, Kavur AE, Cornec-Le Gall E, Gezer NS, Le Meur Y, Selver MA, Rousseau F. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks. Artif Intell Med 2021; 117:102109. [PMID: 34127239 DOI: 10.1016/j.artmed.2021.102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/24/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Abdominal anatomy segmentation is crucial for numerous applications from computer-assisted diagnosis to image-guided surgery. In this context, we address fully-automated multi-organ segmentation from abdominal CT and MR images using deep learning. The proposed model extends standard conditional generative adversarial networks. Additionally to the discriminator which enforces the model to create realistic organ delineations, it embeds cascaded partially pre-trained convolutional encoder-decoders as generator. Encoder fine-tuning from a large amount of non-medical images alleviates data scarcity limitations. The network is trained end-to-end to benefit from simultaneous multi-level segmentation refinements using auto-context. Employed for healthy liver, kidneys and spleen segmentation, our pipeline provides promising results by outperforming state-of-the-art encoder-decoder schemes. Followed for the Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge organized in conjunction with the IEEE International Symposium on Biomedical Imaging 2019, it gave us the first rank for three competition categories: liver CT, liver MR and multi-organ MR segmentation. Combining cascaded convolutional and adversarial networks strengthens the ability of deep learning pipelines to automatically delineate multiple abdominal organs, with good generalization capability. The comprehensive evaluation provided suggests that better guidance could be achieved to help clinicians in abdominal image interpretation and clinical decision making.
Collapse
Affiliation(s)
- Pierre-Henri Conze
- IMT Atlantique, Technopôle Brest-Iroise, 29238 Brest, France; LaTIM UMR 1101, Inserm, 22 avenue Camille Desmoulins, 29238 Brest, France.
| | - Ali Emre Kavur
- Dokuz Eylul University, Cumhuriyet Bulvarı, 35210 Izmir, Turkey
| | - Emilie Cornec-Le Gall
- Department of Nephrology, University Hospital, 2 avenue Foch, 29609 Brest, France; UMR 1078, Inserm, 22 avenue Camille Desmoulins, 29238 Brest, France
| | - Naciye Sinem Gezer
- Dokuz Eylul University, Cumhuriyet Bulvarı, 35210 Izmir, Turkey; Department of Radiology, Faculty of Medicine, Cumhuriyet Bulvarı, 35210 Izmir, Turkey
| | - Yannick Le Meur
- Department of Nephrology, University Hospital, 2 avenue Foch, 29609 Brest, France; LBAI UMR 1227, Inserm, 5 avenue Foch, 29609 Brest, France
| | - M Alper Selver
- Dokuz Eylul University, Cumhuriyet Bulvarı, 35210 Izmir, Turkey
| | - François Rousseau
- IMT Atlantique, Technopôle Brest-Iroise, 29238 Brest, France; LaTIM UMR 1101, Inserm, 22 avenue Camille Desmoulins, 29238 Brest, France
| |
Collapse
|
15
|
Yuan Z, Ma X, Yi J, Luo Z, Peng J. HIVE-Net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in EM images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105925. [PMID: 33508773 DOI: 10.1016/j.cmpb.2020.105925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE With the advancement of electron microscopy (EM) imaging technology, neuroscientists can investigate the function of various intracellular organelles, e.g, mitochondria, at nano-scale. Semantic segmentation of electron microscopy (EM) is an essential step to efficiently obtain reliable morphological statistics. Despite the great success achieved using deep convolutional neural networks (CNNs), they still produce coarse segmentations with lots of discontinuities and false positives for mitochondria segmentation. METHODS In this study, we introduce a centerline-aware multitask network by utilizing centerline as an intrinsic shape cue of mitochondria to regularize the segmentation. Since the application of 3D CNNs on large medical volumes is usually hindered by their substantial computational cost and storage overhead, we introduce a novel hierarchical view-ensemble convolution (HVEC), a simple alternative of 3D convolution to learn 3D spatial contexts using more efficient 2D convolutions. The HVEC enables both decomposing and sharing multi-view information, leading to increased learning capacity. RESULTS Extensive validation results on two challenging benchmarks show that, the proposed method performs favorably against the state-of-the-art methods in accuracy and visual quality but with a greatly reduced model size. Moreover, the proposed model also shows significantly improved generalization ability, especially when training with quite limited amount of training data. Detailed sensitivity analysis and ablation study have also been conducted, which show the robustness of the proposed model and effectiveness of the proposed modules. CONCLUSIONS The experiments highlighted that the proposed architecture enables both simplicity and efficiency leading to increased capacity of learning spatial contexts. Moreover, incorporating shape cues such as centerline information is a promising approach to improve the performance of mitochondria segmentation.
Collapse
Affiliation(s)
- Zhimin Yuan
- College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jiajin Yi
- College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Zhengrong Luo
- College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Jialin Peng
- College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China; Xiamen Key Laboratory of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
16
|
Yang Y, Tang Y, Gao R, Bao S, Huo Y, McKenna MT, Savona MR, Abramson RG, Landman BA. Validation and estimation of spleen volume via computer-assisted segmentation on clinically acquired CT scans. J Med Imaging (Bellingham) 2021; 8:014004. [PMID: 33634205 PMCID: PMC7893322 DOI: 10.1117/1.jmi.8.1.014004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Deep learning is a promising technique for spleen segmentation. Our study aims to validate the reproducibility of deep learning-based spleen volume estimation by performing spleen segmentation on clinically acquired computed tomography (CT) scans from patients with myeloproliferative neoplasms. Approach: As approved by the institutional review board, we obtained 138 de-identified abdominal CT scans. A sum of voxel volume on an expert annotator's segmentations establishes the ground truth (estimation 1). We used our deep convolutional neural network (estimation 2) alongside traditional linear estimations (estimation 3 and 4) to estimate spleen volumes independently. Dice coefficient, Hausdorff distance,R 2 coefficient, Pearson R coefficient, the absolute difference in volume, and the relative difference in volume were calculated for 2 to 4 against the ground truth to compare and assess methods' performances. We re-labeled on scan-rescan on a subset of 40 studies to evaluate method reproducibility. Results: Calculated against the ground truth, theR 2 coefficients for our method (estimation 2) and linear method (estimation 3 and 4) are 0.998, 0.954, and 0.973, respectively. The Pearson R coefficients for the estimations against the ground truth are 0.999, 0.963, and 0.978, respectively (paired t -tests produced p < 0.05 between 2 and 3, and 2 and 4). Conclusion: The deep convolutional neural network algorithm shows excellent potential in rendering more precise spleen volume estimations. Our computer-aided segmentation exhibits reasonable improvements in splenic volume estimation accuracy.
Collapse
Affiliation(s)
- Yiyuan Yang
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Yucheng Tang
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Riqiang Gao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Shunxing Bao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Yuankai Huo
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Matthew T. McKenna
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States
- Vanderbilt University School of Medicine, Department of Surgery, Nashville, Tennessee, United States
| | - Michael R. Savona
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States
- Vanderbilt University School of Medicine, Department of Medicine, Nashville, Tennessee, United States
- Vanderbilt University School of Medicine, Program in Cancer Biology, Nashville, Tennessee, United States
| | | | - Bennett A. Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| |
Collapse
|
17
|
Li M, Lian F, Guo S. Pancreas segmentation based on an adversarial model under two-tier constraints. ACTA ACUST UNITED AC 2020; 65:225021. [DOI: 10.1088/1361-6560/abb6bf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal 2020; 64:101716. [DOI: 10.1016/j.media.2020.101716] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022]
|
19
|
Lan L, You L, Zhang Z, Fan Z, Zhao W, Zeng N, Chen Y, Zhou X. Generative Adversarial Networks and Its Applications in Biomedical Informatics. Front Public Health 2020; 8:164. [PMID: 32478029 PMCID: PMC7235323 DOI: 10.3389/fpubh.2020.00164] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
The basic Generative Adversarial Networks (GAN) model is composed of the input vector, generator, and discriminator. Among them, the generator and discriminator are implicit function expressions, usually implemented by deep neural networks. GAN can learn the generative model of any data distribution through adversarial methods with excellent performance. It has been widely applied to different areas since it was proposed in 2014. In this review, we introduced the origin, specific working principle, and development history of GAN, various applications of GAN in digital image processing, Cycle-GAN, and its application in medical imaging analysis, as well as the latest applications of GAN in medical informatics and bioinformatics.
Collapse
Affiliation(s)
- Lan Lan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei You
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeyang Zhang
- Department of Computer Science and Technology, College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Zhiwei Fan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, China
| | - Yidong Chen
- Department of Computer Science and Technology, College of Computer Science, Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
20
|
Tang O, Xu Y, Tang Y, Lee HH, Chen Y, Gao D, Han S, Gao R, Savona MR, Abramson RG, Huo Y, Landman BA. Validation and Optimization of Multi-Organ Segmentation on Clinical Imaging Archives. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11313:1131320. [PMID: 34040277 PMCID: PMC8148084 DOI: 10.1117/12.2549035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Segmentation of abdominal computed tomography (CT) provides spatial context, morphological properties, and a framework for tissue-specific radiomics to guide quantitative Radiological assessment. A 2015 MICCAI challenge spurred substantial innovation in multi-organ abdominal CT segmentation with both traditional and deep learning methods. Recent innovations in deep methods have driven performance toward levels for which clinical translation is appealing. However, continued cross-validation on open datasets presents the risk of indirect knowledge contamination and could result in circular reasoning. Moreover, "real world" segmentations can be challenging due to the wide variability of abdomen physiology within patients. Herein, we perform two data retrievals to capture clinically acquired deidentified abdominal CT cohorts with respect to a recently published variation on 3D U-Net (baseline algorithm). First, we retrieved 2004 deidentified studies on 476 patients with diagnosis codes involving spleen abnormalities (cohort A). Second, we retrieved 4313 deidentified studies on 1754 patients without diagnosis codes involving spleen abnormalities (cohort B). We perform prospective evaluation of the existing algorithm on both cohorts, yielding 13% and 8% failure rate, respectively. Then, we identified 51 subjects in cohort A with segmentation failures and manually corrected the liver and gallbladder labels. We re-trained the model adding the manual labels, resulting in performance improvement of 9% and 6% failure rate for the A and B cohorts, respectively. In summary, the performance of the baseline on the prospective cohorts was similar to that on previously published datasets. Moreover, adding data from the first cohort substantively improved performance when evaluated on the second withheld validation cohort.
Collapse
Affiliation(s)
- Olivia Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Yuchen Xu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Yucheng Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Ho Hin Lee
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | | | - Dashan Gao
- 12 Sigma Technologies, San Diego, CA, USA 92130
| | | | - Riqiang Gao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Michael R. Savona
- Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| | | | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Bennett A. Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
- Radiology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| |
Collapse
|
21
|
Lee HH, Tang Y, Tang O, Xu Y, Chen Y, Gao D, Han S, Gao R, Savona MR, Abramson RG, Huo Y, Landman BA. Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11313. [PMID: 34040279 DOI: 10.1117/12.2549033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Human in-the-loop quality assurance (QA) is typically performed after medical image segmentation to ensure that the systems are performing as intended, as well as identifying and excluding outliers. By performing QA on large-scale, previously unlabeled testing data, categorical QA scores (e.g. "successful" versus "unsuccessful") can be generated. Unfortunately, the precious use of resources for human in-the-loop QA scores are not typically reused in medical image machine learning, especially to train a deep neural network for image segmentation. Herein, we perform a pilot study to investigate if the QA labels can be used as supplementary supervision to augment the training process in a semi-supervised fashion. In this paper, we propose a semi-supervised multi-organ segmentation deep neural network consisting of a traditional segmentation model generator and a QA involved discriminator. An existing 3-D abdominal segmentation network is employed, while the pre-trained ResNet-18 network is used as discriminator. A large-scale dataset of 2027 volumes are used to train the generator, whose 2-D montage images and segmentation mask with QA scores are used to train the discriminator. To generate the QA scores, the 2-D montage images were reviewed manually and coded 0 (success), 1 (errors consistent with published performance), and 2 (gross failure). Then, the ResNet-18 network was trained with 1623 montage images in equal distribution of all three code labels and achieved an accuracy 94% for classification predictions with 404 montage images withheld for the test cohort. To assess the performance of using the QA supervision, the discriminator was used as a loss function in a multi-organ segmentation pipeline. The inclusion of QA-loss function boosted performance on the unlabeled test dataset from 714 patients to 951 patients over the baseline model. Additionally, the number of failures decreased from 606 (29.90%) to 402 (19.83%). The contributions of the proposed method are three-fold: We show that (1) the QA scores can be used as a loss function to perform semi-supervised learning for unlabeled data, (2) the well trained discriminator is learnt by QA score rather than traditional "true/false", and (3) the performance of multi-organ segmentation on unlabeled datasets can be fine-tuned with more robust and higher accuracy than the original baseline method. The use of QA-inspired loss functions represents a promising area of future research and may permit tighter integration of supervised and semi-supervised learning.
Collapse
Affiliation(s)
- Ho Hin Lee
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Yucheng Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Olivia Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Yuchen Xu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | | | - Dashan Gao
- 12 Sigma Technologies, San Diego, CA, USA 92130
| | | | - Riqiang Gao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | | | - Richard G Abramson
- Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212.,Radiology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| |
Collapse
|
22
|
Xu Y, Tang O, Tang Y, Lee HH, Chen Y, Gao D, Han S, Gao R, Savona MR, Abramson RG, Huo Y, Landman BA. Outlier Guided Optimization of Abdominal Segmentation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11313. [PMID: 33907347 DOI: 10.1117/12.2549365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abdominal multi-organ segmentation of computed tomography (CT) images has been the subject of extensive research interest. It presents a substantial challenge in medical image processing, as the shape and distribution of abdominal organs can vary greatly among the population and within an individual over time. While continuous integration of novel datasets into the training set provides potential for better segmentation performance, collection of data at scale is not only costly, but also impractical in some contexts. Moreover, it remains unclear what marginal value additional data have to offer. Herein, we propose a single-pass active learning method through human quality assurance (QA). We built on a pre-trained 3D U-Net model for abdominal multi-organ segmentation and augmented the dataset either with outlier data (e.g., exemplars for which the baseline algorithm failed) or inliers (e.g., exemplars for which the baseline algorithm worked). The new models were trained using the augmented datasets with 5-fold cross-validation (for outlier data) and withheld outlier samples (for inlier data). Manual labeling of outliers increased Dice scores with outliers by 0.130, compared to an increase of 0.067 with inliers (p<0.001, two-tailed paired t-test). By adding 5 to 37 inliers or outliers to training, we find that the marginal value of adding outliers is higher than that of adding inliers. In summary, improvement on single-organ performance was obtained without diminishing multi-organ performance or significantly increasing training time. Hence, identification and correction of baseline failure cases present an effective and efficient method of selecting training data to improve algorithm performance.
Collapse
Affiliation(s)
- Yuchen Xu
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Olivia Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Yucheng Tang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Ho Hin Lee
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | | | - Dashan Gao
- 12 Sigma Technology, San Diego, CA, USA 92130
| | | | - Riqiang Gao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Michael R Savona
- Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| | - Richard G Abramson
- Radiology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 37212.,Radiology, Vanderbilt University Medical Center, Nashville, TN, USA 37235
| |
Collapse
|
23
|
Huo Y, Tang Y, Chen Y, Gao D, Han S, Bao S, De S, Terry JG, Carr JJ, Abramson RG, Landman BA. Stochastic tissue window normalization of deep learning on computed tomography. J Med Imaging (Bellingham) 2019; 6:044005. [PMID: 31763353 PMCID: PMC6863984 DOI: 10.1117/1.jmi.6.4.044005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/04/2019] [Indexed: 11/14/2022] Open
Abstract
Tissue window filtering has been widely used in deep learning for computed tomography (CT) image analyses to improve training performance (e.g., soft tissue windows for abdominal CT). However, the effectiveness of tissue window normalization is questionable since the generalizability of the trained model might be further harmed, especially when such models are applied to new cohorts with different CT reconstruction kernels, contrast mechanisms, dynamic variations in the acquisition, and physiological changes. We evaluate the effectiveness of both with and without using soft tissue window normalization on multisite CT cohorts. Moreover, we propose a stochastic tissue window normalization (SWN) method to improve the generalizability of tissue window normalization. Different from the random sampling, the SWN method centers the randomization around the soft tissue window to maintain the specificity for abdominal organs. To evaluate the performance of different strategies, 80 training and 453 validation and testing scans from six datasets are employed to perform multiorgan segmentation using standard 2D U-Net. The six datasets cover the scenarios, where the training and testing scans are from (1) same scanner and same population, (2) same CT contrast but different pathology, and (3) different CT contrast and pathology. The traditional soft tissue window and nonwindowed approaches achieved better performance on (1). The proposed SWN achieved general superior performance on (2) and (3) with statistical analyses, which offers better generalizability for a trained model.
Collapse
Affiliation(s)
- Yuankai Huo
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Yucheng Tang
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Yunqiang Chen
- 12 Sigma Technologies, San Diego, California, United States
| | - Dashan Gao
- 12 Sigma Technologies, San Diego, California, United States
| | - Shizhong Han
- 12 Sigma Technologies, San Diego, California, United States
| | - Shunxing Bao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Smita De
- Cleveland Clinic, Cleveland, Ohio, United States
| | - James G. Terry
- Vanderbilt University Medical Center, Department of Radiology, Nashville, Tennessee, United States
| | - Jeffrey J. Carr
- Vanderbilt University Medical Center, Department of Radiology, Nashville, Tennessee, United States
| | - Richard G. Abramson
- Vanderbilt University Medical Center, Department of Radiology, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Radiology, Nashville, Tennessee, United States
| |
Collapse
|