1
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
2
|
Dong Q, Ullah MN, Innes D, Watkins RD, Chang CM, Zou SJ, Groll A, Sacco I, Chinn G, Levin CS. PETcoil: first results from a second-generation RF-penetrable TOF-PET brain insert for simultaneous PET/MRI. Phys Med Biol 2024; 69:185007. [PMID: 39168156 DOI: 10.1088/1361-6560/ad7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance imaging provides concurrent information about anatomic, functional, and molecular changes in disease. We are developing a second generation MR-compatible RF-penetrable TOF-PET insert. The insert has a smaller scintillation crystal size and ring diameter compared to clinical whole-body PET scanners, resulting in higher spatial resolution and sensitivity. This paper reports the initial system performance of this full-ring PET insert. The global photopeak energy resolution and global coincidence time resolution, 11.74 ± 0.03 % FWHM and 238.1 ± 0.5 ps FWHM, respectively, are preserved as we scaled up the system to a full ring comprising 12, 288 LYSO-SiPM channels (crystal size: 3.2 × 3.2 × 20 mm3). Throughout a ten-hour experiment, the system performance remained stable, exhibiting a less than 1% change in all measured parameters. In a resolution phantom study, the system successfully resolved all 2.8 mm diameter rods, achieving an average VPR of 0.28 ± 0.08 without TOF and 0.24 ± 0.07 with TOF applied. Moreover, the implementation of TOF in the Hoffman phantom study also enhanced image quality. Initial MR compatibility studies of the full PET ring were performed with it unpowered as a milestone to focus on looking for material and geometry-related artifacts. During all MR studies, the MR body coil functioned as both the transmit and receive coil, and no observable artifacts were detected. As expected, using the body coil also as the RF receiver, MR image signal-to-noise ratio exhibited degradation (∼30%), so we are developing a high quality receive-only coil that resides inside the PET ring.
Collapse
Affiliation(s)
- Qian Dong
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Muhammad Nasir Ullah
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Derek Innes
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ronald D Watkins
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Chen-Ming Chang
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Sarah J Zou
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Andrew Groll
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ilaria Sacco
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Garry Chinn
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
3
|
Ko GB, Lee JS. Dual threshold input receiver FPGA-only signal digitization method for time-of-flight positron emission tomography. Biomed Eng Lett 2024; 14:847-858. [PMID: 38946816 PMCID: PMC11208371 DOI: 10.1007/s13534-024-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/07/2024] [Indexed: 07/02/2024] Open
Abstract
As silicon photomultiplier (SiPM)-based time-of-flight (TOF) positron emission tomography (PET) becomes popular, the need for sophisticated PET data acquisition (DAQ) systems is increasing. One promising solution to this challenge is the adoption of a field-programmable gate array (FPGA)-only signal digitization method. In this paper, we propose a new approach to efficiently implement an FPGA-only digitizer. We configured the input/output (IO) port of the FPGA to function as a dual-threshold voltage comparator through the use of simple passive circuitry and heterogeneous IO standards. This configuration overcomes the limitations of existing methods by allowing different threshold voltages for adjacent IO pins, effectively reducing routing complexity and lowering manufacturing costs. An FPGA-only digitizer was implemented by integrating the dual-threshold voltage comparator and FPGA-based time-to-digital converter. By combining the dual-threshold time-over-threshold (TOT) method and curve fitting, precise energy information could be obtained. The performance of the FPGA-only digitizer was assessed using a detector setup comprising a 3 × 3 × 20 mm3 LYSO scintillation crystal and a single pixel SiPM. Using the configured evaluation setup, an energy resolution of 12.5% and a time resolution of 146 ± 9 ps were achieved for a 20 mm scintillation crystal. The dual-threshold TOT implemented using the proposed method showed consistent linearity across an energy range of 100 keV to 600 keV. The proposed method is well-suited for the development of cost-effective DAQ systems in highly integrated TOF PET systems.
Collapse
Affiliation(s)
- Guen Bae Ko
- Brightonix Imaging Inc., Seoul, 04782 South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul, 04782 South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, 03080 South Korea
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080 South Korea
| |
Collapse
|
4
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
5
|
Fang L, Zhang B, Li B, Zhang X, Zhou X, Yang J, Li A, Shi X, Liu Y, Kreissl M, D'Ascenzo N, Xiao P, Xie Q. Development and evaluation of a new high-TOF-resolution all-digital brain PET system. Phys Med Biol 2024; 69:025019. [PMID: 38100841 DOI: 10.1088/1361-6560/ad164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.
Collapse
Affiliation(s)
- Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yuqing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, People's Republic of China
| | - Michael Kreissl
- Division of Nuclear Medicine, Deprtment of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
- Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Department of Innovation in Engineering and Physics, Istituto Neurologico Mediterraneo NEUROMED I.R.C.C.S., Pozzilli, Italy
| |
Collapse
|
6
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
7
|
Allen MS, Scipioni M, Catana C. New Horizons in Brain PET Instrumentation. PET Clin 2024; 19:25-36. [PMID: 37806894 PMCID: PMC10840690 DOI: 10.1016/j.cpet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Dedicated brain PET scanners are optimized to provide high sensitivity and high spatial resolution compared with existing whole-body PET systems, and they can be much cheaper to produce and install in various clinical and research settings. Advancements in detector technology over the past few years have placed several standalone PET, PET/computed tomography, and PET/MR systems on or near the commercial market; the features and capabilities of these systems will be reviewed here.
Collapse
Affiliation(s)
- Magdelena S Allen
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Department of Physics, Massachusetts Institute of Technology
| | - Michele Scipioni
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Harvard Medical School
| | - Ciprian Catana
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Harvard Medical School.
| |
Collapse
|
8
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
10
|
Arabi H, Zaidi H. Recent Advances in Positron Emission Tomography/Magnetic Resonance Imaging Technology. Magn Reson Imaging Clin N Am 2023; 31:503-515. [PMID: 37741638 DOI: 10.1016/j.mric.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
More than a decade has passed since the clinical deployment of the first commercial whole-body hybrid PET/MR scanner in the clinic. The major advantages and limitations of this technology have been investigated from technical and medical perspectives. Despite the remarkable advantages associated with hybrid PET/MR imaging, such as reduced radiation dose and fully simultaneous functional and structural imaging, this technology faced major challenges in terms of mutual interference between MRI and PET components, in addition to the complexity of achieving quantitative imaging owing to the intricate MRI-guided attenuation correction in PET/MRI. In this review, the latest technical developments in PET/MRI technology as well as the state-of-the-art solutions to the major challenges of quantitative PET/MR imaging are discussed.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva CH-1205, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense 500, Denmark.
| |
Collapse
|
11
|
Pommranz CM, Schmidt FP, Mannheim JG, Diebold SJ, Tenzer C, Santangelo A, Pichler BJ. Design and performance simulation studies of a breast PET insert integrable into a clinical whole-body PET/MRI scanner. Phys Med Biol 2023; 68. [PMID: 36753773 DOI: 10.1088/1361-6560/acba77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Objective. Three different breast positron emission tomography (PET) insert geometries are proposed for integration into an existing magnetic resonance imaging (MRI) breast coil (Breast Biopsy Coil, NORAS MRI products) to be used inside a whole-body PET/MRI scanner (Biograph mMR, Siemens Healthineers) to enhance the sensitivity and spatial resolution of imaging inside the breast.Approach. Monte Carlo simulations were performed to predict and compare the performance characteristics of the three geometries in terms of the sensitivity, spatial resolution, scatter fraction, and noise equivalent count rate (NECR). In addition, the background single count rate due to organ uptake in a clinical scan scenario was predicted using a realistic anthropomorphic phantom.Main results. In the center of the field of view (cFOV), absolute sensitivities of 3.1%, 2.7%, and 2.2% were found for Geometry A (detectors arranged in two cylinders), Geometry B (detectors arranged in two partial cylinders), and Geometry C (detectors arranged in two half cylinders combined with two plates), respectively. The full width at half maximum spatial resolution was determined to be 1.7 mm (Geometry A), 1.8 mm (Geometry B) and 2.0 mm (Geometry C) at 5 mm from the cFOV. Designs with multiple scintillation-crystal layers capable of determining the depth of interaction (DOI) strongly improved the spatial resolution at larger distances from the transaxial cFOV. The system scatter fractions were 33.1% (Geometries A and B) and 32.3% (Geometry C). The peak NECRs occurred at source activities of 300 MBq (Geometry A), 310 MBq (Geometry B) and 340 MBq (Geometry C). The background single-event count rates were 17.1 × 106cps (Geometry A), 15.3 × 106cps (Geometry B) and 14.8 × 106cps (Geometry C). Geometry A in the three-layer DOI variant exhibited the best PET performance characteristics but could be challenging to manufacture. Geometry C had the lowest impact on the spatial resolution and the lowest sensitivity among the investigated geometries.Significance. Geometry B in the two-layer DOI variant represented an effective compromise between the PET performance and manufacturing difficulty and was found to be a promising candidate for the future breast PET insert.
Collapse
Affiliation(s)
- C M Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - F P Schmidt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Otfried-Mueller-Strasse 14, D-72076 Tuebingen, Germany
| | - J G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - S J Diebold
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - C Tenzer
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - A Santangelo
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Zeng X, Wang Z, Tan W, Petersen E, Cao X, LaBella A, Boccia A, Franceschi D, de Leon M, Chiang GCY, Qi J, Biegon A, Zhao W, Goldan AH. A conformal TOF-DOI Prism-PET prototype scanner for high-resolution quantitative neuroimaging. Med Phys 2023; 50:10.1002/mp.16223. [PMID: 36651630 PMCID: PMC11025680 DOI: 10.1002/mp.16223] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) has had a transformative impact on oncological and neurological applications. However, still much of PET's potential remains untapped with limitations primarily driven by low spatial resolution, which severely hampers accurate quantitative PET imaging via the partial volume effect (PVE). PURPOSE We present experimental results of a practical and cost-effective ultra-high resolution brain-dedicated PET scanner, using our depth-encoding Prism-PET detectors arranged along a compact and conformal gantry, showing substantial reduction in PVE and accurate radiotracer uptake quantification in small regions. METHODS The decagon-shaped prototype scanner has a long diameter of 38.5 cm, a short diameter of 29.1 cm, and an axial field-of-view (FOV) of 25.5 mm with a single ring of 40 Prism-PET detector modules. Each module comprises a 16 × 16 array of 1.5 × 1.5 × 20-mm3 lutetium yttrium oxyorthosillicate (LYSO) scintillator crystals coupled 4-to-1 to an 8 × 8 array of silicon photomultiplier (SiPM) pixels on one end and to a prismatoid light guide array on the opposite end. The scanner's performance was evaluated by measuring depth-of-interaction (DOI) resolution, energy resolution, timing resolution, spatial resolution, sensitivity, and image quality of ultra-micro Derenzo and three-dimensional (3D) Hoffman brain phantoms. RESULTS The full width at half maximum (FWHM) DOI, energy, and timing resolutions of the scanner are 2.85 mm, 12.6%, and 271 ps, respectively. Not considering artifacts due to mechanical misalignment of detector blocks, the intrinsic spatial resolution is 0.89-mm FWHM. Point source images reconstructed with 3D filtered back-projection (FBP) show an average spatial resolution of 1.53-mm FWHM across the entire FOV. The peak absolute sensitivity is 1.2% for an energy window of 400-650 keV. The ultra-micro Derenzo phantom study demonstrates the highest reported spatial resolution performance for a human brain PET scanner with perfect reconstruction of 1.00-mm diameter hot-rods. Reconstructed images of customized Hoffman brain phantoms prove that Prism-PET enables accurate radiotracer uptake quantification in small brain regions (2-3 mm). CONCLUSIONS Prism-PET will substantially strengthen the utility of quantitative PET in neurology for early diagnosis of neurodegenerative diseases, and in neuro-oncology for improved management of both primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Xinjie Zeng
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Zipai Wang
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Wanbin Tan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Eric Petersen
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Xinjie Cao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, US
| | - Andy LaBella
- Department of Radiology, Boston children’s Hospital, Boston, MA, US
| | - Anthony Boccia
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Dinko Franceschi
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Gloria Chia-Yi Chiang
- Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, US
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, CA, US
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| | - Amir H. Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, US
| |
Collapse
|
13
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
14
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
15
|
Morimoto-Ishikawa D, Hanaoka K, Watanabe S, Yamada T, Yamakawa Y, Minagawa S, Takenouchi S, Ohtani A, Mizuta T, Kaida H, Ishii K. Evaluation of the performance of a high-resolution time-of-flight PET system dedicated to the head and breast according to NEMA NU 2-2012 standard. EJNMMI Phys 2022; 9:88. [PMID: 36525103 PMCID: PMC9758266 DOI: 10.1186/s40658-022-00518-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study evaluated the physical performance of a positron emission tomography (PET) system dedicated to the head and breast according to the National Electrical Manufacturers Association (NEMA) NU2-2012 standard. METHODS The spatial resolution, sensitivity, scatter fraction, count rate characteristics, corrections for count losses and randoms, and image quality of the system were determined. All measurements were performed according to the NEMA NU2-2012 acquisition protocols, but image quality was assessed using a brain-sized phantom. Furthermore, scans of the three-dimensional (3D) Hoffmann brain phantom and mini-Derenzo phantom were acquired to allow visual evaluation of the imaging performance for small structures. RESULTS The tangential, radial, and axial full width at half maximum (FWHM) at a 10-mm offset in half the axial field of view were measured as 2.3, 2.5, and 2.9 mm, respectively. The average system sensitivity at the center of the field of view and at a 10-cm radial offset was 7.18 and 8.65 cps/kBq, respectively. The peak noise-equivalent counting rate was 35.2 kcps at 4.8 kBq/ml. The corresponding scatter fraction at the peak noise-equivalent counting rate was 46.8%. The peak true rate and scatter fraction at 8.6 kBq/ml were 127.8 kcps and 54.3%, respectively. The percent contrast value for a 10-mm sphere was approximately 50%. On the 3D Hoffman brain phantom image, the structures of the thin layers composing the phantom were visualized on the sagittal and coronal images. On the mini-Derenzo phantom, each of the 1.6-mm rods was clearly visualized. CONCLUSION Taken together, these results indicate that the head- and breast-dedicated PET system has high resolution and is well suited for clinical PET imaging.
Collapse
Affiliation(s)
- Daisuke Morimoto-Ishikawa
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Kohei Hanaoka
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Shota Watanabe
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Takahiro Yamada
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan
| | - Yoshiyuki Yamakawa
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Suzuka Minagawa
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Shiho Takenouchi
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Atsushi Ohtani
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Tetsuro Mizuta
- grid.274249.e0000 0004 0571 0853Medical Systems Division, Shimadzu Corporation, Kyoto, Japan
| | - Hayato Kaida
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan ,grid.258622.90000 0004 1936 9967Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazunari Ishii
- grid.413111.70000 0004 0466 7515Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511 Japan ,grid.258622.90000 0004 1936 9967Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
16
|
Image restoration algorithm incorporating methods to remove noise and blurring from positron emission tomography imaging for Alzheimer's disease diagnosis. Phys Med 2022; 103:181-189. [DOI: 10.1016/j.ejmp.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
|
17
|
Park H, Yi M, Lee JS. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett 2022; 12:263-283. [PMID: 35892029 PMCID: PMC9308856 DOI: 10.1007/s13534-022-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Minseok Yi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Brightonix Imaging Inc, Seoul, 04782 South Korea
| |
Collapse
|
18
|
Hunter WCJ, DeWitt DQ, Miyaoka RS. Performance Characteristics of a Dual-Sided Position-Sensitive Sparse-Sensor Detector for Gamma-ray Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:385-392. [PMID: 35372738 PMCID: PMC8974312 DOI: 10.1109/trpms.2021.3087465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purpose We characterize the performance of a dualsided position-sensitive sparse sensor (DS-PS3) array detector for positron emission tomography (PET). The DS-PS3 detector is designed as a high performance, cost effective PET detector for organ-specific imaging systems (e.g., brain, breast, etc.). Methods Two sparse 4-by-4 arrays of silicon photomultipliers (18.5% SiPM fill-factor) coupled through segmented light guide are used to readout a 15-by-15 array of 2-mm-pitch, 20-mm-long LSYO crystals. Uniform flood data were used for crystal identification, depth determination, and position-dependent energy resolution. Intrinsic-spatial and depth-of-interaction (DOI) resolutions were determined by stepping a collimated gamma-ray source over the front and side, respectively. Results We measured an average intrinsic spatial resolution of 2.14 ± 0.07 mm full width at half maximum (FWHM). DOI FWHM resolution varied from 2.2 mm for crystals over sensors to 5.3 mm for crystals between sensors. Average DOI resolution was 3.6 ± 0.8 mm FHWM. Average energy resolution for the detector module was 16.6% with a range of 11.3% to 25.8%. Conclusions We have demonstrated use of a dual-sided sparse sensor arrays to enable low-cost high-performance decoding of three-dimensional positioning within a PET detector using an 18.5% sensor fill-factor.
Collapse
|
19
|
Masturzo L, Carra P, Erba PA, Morrocchi M, Pilleri A, Sportelli G, Belcari N. Monte Carlo Characterization of the Trimage Brain PET System. J Imaging 2022; 8:jimaging8020021. [PMID: 35200724 PMCID: PMC8878795 DOI: 10.3390/jimaging8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The TRIMAGE project aims to develop a brain-dedicated PET/MR/EEG (Positron Emission Tomography/Magnetic Resonance/Electroencephalogram) system that is able to perform simultaneous PET, MR and EEG acquisitions. The PET component consists of a full ring with 18 sectors. Each sector includes three square detector modules based on dual sstaggered LYSO:Ce matrices read out by SiPMs. Using Monte Carlo simulations and following NEMA (National Electrical Manufacturers Association) guidelines, image quality procedures have been applied to evaluate the performance of the PET component of the system. The performance are reported in terms of spatial resolution, uniformity, recovery coefficient, spill over ratio, noise equivalent count rate (NECR) and scatter fraction. The results show that the TRIMAGE system is at the top of the current brain PET technologies.
Collapse
Affiliation(s)
- Luigi Masturzo
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Pietro Carra
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Paola Anna Erba
- Department of Translational Research and New Technology in Medicine and Surgery, Regional Center of Nuclear Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
| | - Matteo Morrocchi
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Alessandro Pilleri
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Giancarlo Sportelli
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
- Correspondence:
| | - Nicola Belcari
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| |
Collapse
|
20
|
A time-based single transmission-line readout with position multiplexing. Biomed Eng Lett 2022; 12:85-95. [PMID: 35186362 PMCID: PMC8825911 DOI: 10.1007/s13534-022-00215-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023] Open
Abstract
We developed a time-based single-transmission-line readout method for time-of-flight positron emission tomography (PET) detectors. The 2D position of a silicon photomultiplier (SiPM) array was encoded in the upper and lower widths of a specially prepared L-shaped tag pulse followed by the original scintillation signal. A PET detector setup was configured using a 4 × 4 array of LSO crystals optically coupled one-to-one to a 4 × 4 SiPM array. Two pulse width modulator circuits were employed per SiPM anode signal channel and a total of 32 width-modulated digital pulses were summed and merged with a delayed common-cathode signal. The final output was analyzed using timestamps crossing two-level threshold voltages. All 16 crystals were clearly separated on a positioning map. The average energy and coincidence time resolutions were 15.0 ± 1.1% and 288.7 ± 29.3 ps after proper correction process, respectively. A 3D position decoding capability was also shown by the remarkable discrimination performance in a phoswich PET detector setup (LSO and LGSO), resulting from well-preserved scintillation signals. The proposed method enables a time-based single-channel readout with 3D gamma ray interaction position decoding capability without compromising on detector performance. This method provides gamma ray energy and arrival time information as well as 2D and depthwise interaction positions of the phoswich detectors through one channel readout. Thus, channels can be reduced by at least 4-5 times compared to typically employed charge-sharing-based position multiplexing method; this significantly reduces the burden of data acquisition on the PET system.
Collapse
|
21
|
Bouziri H, Pepin CM, Koua K, Benhouria M, Paulin C, Ouyang J, Normandin M, Pratte JF, El Fakhri G, Lecomte R, Fontaine R. Investigation of a Model-based Time-over-threshold Technique for Phoswich Crystal Discrimination. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:393-403. [PMID: 35372739 PMCID: PMC8974315 DOI: 10.1109/trpms.2021.3077412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The best crystal identification (CI) algorithms proposed so far for phoswich detectors are based on adaptive filtering and pulse shape discrimination (PSD). However, these techniques require free running analog to digital converters, which is no longer possible with the ever increasing pixelization of new detectors. We propose to explore the dual-threshold time-over-threshold (ToT) technique, used to measure events energy and time of occurence, as a more robust solution for crystal identification with broad energy windows in phoswich detectors. In this study, phoswich assemblies made of various combinations of LGSO and LYSO scintillators with decay times in the range 30 to 65 ns were investigated for the LabPET II detection front-end. The electronic readout is based on a 4 × 8 APD array where pixels are individually coupled to charge sensitive preamplifiers followed by first order CR-RC shapers with 75 ns peaking time. Crystal identification data were sorted out based on the measurements of likeliness between acquired signals and a time domain model of the analog front-end. Results demonstrate that crystal identification can be successfully performed using a dual-threshold ToT scheme with a discrimination accuracy of 99.1% for LGSO (30 ns)/LGSO (45 ns), 98.1% for LGSO (65 ns)/LYSO (40 ns) and 92.1% for LYSO (32 ns)/LYSO (47 ns), for an energy window of [350-650] keV. Moreover, the method shows a discrimination accuracy >97% for the two first pairs and ~90% for the last one when using a wide energy window of [250-650] keV.
Collapse
Affiliation(s)
- Haithem Bouziri
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| | - Catherine M Pepin
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Konin Koua
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| | - Maher Benhouria
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| | - Caroline Paulin
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Marc Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Jean-François Pratte
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114 USA
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Réjean Fontaine
- Interdisciplinary Institute for Technological Innovation (3IT) and with the Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 0A5
| |
Collapse
|
22
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
23
|
Abstract
Medical imaging is considered one of the most important advances in the history of medicine and has become an essential part of the diagnosis and treatment of patients. Earlier prediction and treatment have been driving the acquisition of higher image resolutions as well as the fusion of different modalities, raising the need for sophisticated hardware and software systems for medical image registration, storage, analysis, and processing. In this scenario and given the new clinical pipelines and the huge clinical burden of hospitals, these systems are often required to provide both highly accurate and real-time processing of large amounts of imaging data. Additionally, lowering the prices of each part of imaging equipment, as well as its development and implementation, and increasing their lifespan is crucial to minimize the cost and lead to more accessible healthcare. This paper focuses on the evolution and the application of different hardware architectures (namely, CPU, GPU, DSP, FPGA, and ASIC) in medical imaging through various specific examples and discussing different options depending on the specific application. The main purpose is to provide a general introduction to hardware acceleration techniques for medical imaging researchers and developers who need to accelerate their implementations.
Collapse
|
24
|
Lee JS, Kim KM, Choi Y, Kim HJ. A Brief History of Nuclear Medicine Physics, Instrumentation, and Data Sciences in Korea. Nucl Med Mol Imaging 2021; 55:265-284. [PMID: 34868376 DOI: 10.1007/s13139-021-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022] Open
Abstract
We review the history of nuclear medicine physics, instrumentation, and data sciences in Korea to commemorate the 60th anniversary of the Korean Society of Nuclear Medicine. In the 1970s and 1980s, the development of SPECT, nuclear stethoscope, and bone densitometry systems, as well as kidney and cardiac image analysis technology, marked the beginning of nuclear medicine physics and engineering in Korea. With the introduction of PET and cyclotron in Korea in 1994, nuclear medicine imaging research was further activated. With the support of large-scale government projects, the development of gamma camera, SPECT, and PET systems was carried out. Exploiting the use of PET scanners in conjunction with cyclotrons, extensive studies on myocardial blood flow quantification and brain image analysis were also actively pursued. In 2005, Korea's first domestic cyclotron succeeded in producing radioactive isotopes, and the cyclotron was provided to six universities and university hospitals, thereby facilitating the nationwide supply of PET radiopharmaceuticals. Since the late 2000s, research on PET/MRI has been actively conducted, and the advanced research results of Korean scientists in the fields of silicon photomultiplier PET and simultaneous PET/MRI have attracted significant attention from the academic community. Currently, Korean researchers are actively involved in endeavors to solve a variety of complex problems in nuclear medicine using artificial intelligence and deep learning technologies.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Kyeong Min Kim
- Department of Isotopic Drug Development, Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Choi
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Hee-Joung Kim
- Department of Radiological Science, Yonsei University, Wonju, Korea
| |
Collapse
|
25
|
Shim HS, Park H, Lee JS. A temperature-dependent gain compensation technique for positron emission tomography detectors based on a silicon photomultiplier. Phys Med Biol 2021; 66. [PMID: 34587608 DOI: 10.1088/1361-6560/ac2b81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
In this study, we propose a simple gain compensation technique for silicon photomultiplier (SiPM)-based positron emission tomography detectors, using a temperature sensor that automatically controls the bias voltage of the SiPM depending upon the ambient temperature. The temperature sensor output, for which the temperature coefficient can be controlled by the input voltage, is used as one end of the bias voltage. By adjusting the temperature coefficient, the proposed gain compensation method can be applied to various SiPMs with different breakdown voltages. As a proof of concept, the proposed method was evaluated for two scintillation detector setups. Applying the proposed method to a single-channel SiPM (ASD-NUV3S-P; AdvanSiD, Italy) coupled with a 3 mm × 3 mm × 20 mm LGSO crystal, the 511 keV photopeak position in the energy histogram changed by only 1.52% per 10 °C while, without gain compensation, it changed by 13.27% per 10 °C between 10 °C and 30 °C. On a 4 × 4 array MPPC (S14161-3050HS-04; Hamamatsu, Japan), coupled with a 3.12 mm × 3.12 mm × 15 mm 4 × 4 LSO array, the photopeak changes with and without gain compensation were 2.34% and 20.53% per 10 °C between 10 °C and 30 °C, respectively. On the wider range of temperature, between 0 °C and 40 °C, the photopeak changes with and without gain compensation were 3.09% and 20.89%, respectively. The energy resolution degradation of SiPM-based scintillation detectors operating at temperatures was negligible when the proposed gain compensation method was applied.
Collapse
Affiliation(s)
- Hyeong Seok Shim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haewook Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Brightonix Imaging Inc., Seoul, Republic of Korea
| |
Collapse
|