1
|
Jiang X, Tivnan M, Zhang X, Stayman JW, Gang GJ. Design Optimization of A Triple-Layer Flat-Panel Detector for Three-Material Decomposition. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12925:129250U. [PMID: 39301500 PMCID: PMC11412191 DOI: 10.1117/12.3006385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Spectral radiography and fluoroscopy with multi-layer flat-panel detectors (FPD) is being actively investigated in a range of clinical applications. For applications involving contrast administration, maximal contrast resolution is achieved when overlaying background anatomy is completely removed. This calls for three-material decomposition (soft tissue, bone, and contrast) enabled by measurements in three energy channels. We have previously demonstrated the feasibility of such decomposition using a triple-layer detector. While algorithmic solutions can be adopted to mitigate noise in the material basis images, in this work, we seek to fundamentally improve the conditioning of the problem through optimized system design. Design parameters include source voltage, the thickness of the top two CsI scintillators, and the thickness of two copper interstitial filters. The design objective is to minimize noise in the basis image containing contrast, chosen as gadolinium in this work to improve separation from bone. The optimized design was compared with other designs with unoptimized scintillator thickness and/or without interstitial filtration. Results show that CsI thickness optimization and interstitial filtration can significantly reduce noise in the gadolinium image by 35.7% and 42.7% respectively within a lung ROI, which in turn boosts detectability of small vessels. Gadolinium and bone signals are separated in all cases. Visualization of coronary vessels is enabled by the combining optimized system design and regularization. Results from this work demonstrate that three-material decomposition can be significantly improved with system design optimization. Optimized designs obtained from this work can inform imaging techniques selection and triple-layer detector fabrication for spectral radiography.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, 21205, USA
| | - Matthew Tivnan
- Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Boston MA, 02114, USA
| | - Xiaoxuan Zhang
- Department of Radiology, University of Pennsylvania, Philadelphia PA, 19104, USA
| | - J. Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, 21205, USA
| | - Grace J. Gang
- Department of Radiology, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
2
|
Ma C, Su T, Zhu J, Zhang X, Zheng H, Liang D, Wang N, Zhang Y, Ge Y. Performance evaluation of quantitative material decomposition in slow kVp switching dual-energy CT. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:69-85. [PMID: 38189729 DOI: 10.3233/xst-230201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Slow kVp switching technique is an important approach to realize dual-energy CT (DECT) imaging, but its performance has not been thoroughly investigated yet. OBJECTIVE This study aims at comparing and evaluating the DECT imaging performance of different slow kVp switching protocols, and thus helps determining the optimal system settings. METHODS To investigate the impact of energy separation, two different beam filtration schemes are compared: the stationary beam filtration and dynamic beam filtration. Moreover, uniform tube voltage modulation and weighted tube voltage modulation are compared along with various modulation frequencies. A model-based direct decomposition algorithm is employed to generate the water and iodine material bases. Both numerical and physical experiments are conducted to verify the slow kVp switching DECT imaging performance. RESULTS Numerical and experimental results demonstrate that the material decomposition is less sensitive to beam filtration, voltage modulation type and modulation frequency. As a result, robust material-specific quantitative decomposition can be achieved in slow kVp switching DECT imaging. CONCLUSIONS Quantitative DECT imaging can be implemented with slow kVp switching under a variety of system settings.
Collapse
Affiliation(s)
- Chenchen Ma
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Ting Su
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiongtao Zhu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dong Liang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Na Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yunxin Zhang
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|