1
|
Yao L, Wang J, Wu Z, Du Q, Yang X, Li M, Zheng J. Parallel processing model for low-dose computed tomography image denoising. Vis Comput Ind Biomed Art 2024; 7:14. [PMID: 38865022 PMCID: PMC11169366 DOI: 10.1186/s42492-024-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Low-dose computed tomography (LDCT) has gained increasing attention owing to its crucial role in reducing radiation exposure in patients. However, LDCT-reconstructed images often suffer from significant noise and artifacts, negatively impacting the radiologists' ability to accurately diagnose. To address this issue, many studies have focused on denoising LDCT images using deep learning (DL) methods. However, these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources, which adversely affects the performance of current denoising models. In this study, we propose a parallel processing model, the multi-encoder deep feature transformation network (MDFTN), which is designed to enhance the performance of LDCT imaging for multisource data. Unlike traditional network structures, which rely on continual learning to process multitask data, the approach can simultaneously handle LDCT images within a unified framework from various imaging sources. The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module (DFTM). During forward propagation in network training, each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space. Subsequently, each decoder performs an inverse operation for multisource loss estimation. Through collaborative training, the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization. Numerous experiments were conducted on two public datasets and one local dataset, which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures. The source code is available at https://github.com/123456789ey/MDFTN .
Collapse
Affiliation(s)
- Libing Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiping Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ming Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
2
|
Gao Q, Li Z, Zhang J, Zhang Y, Shan H. CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for Low-Dose CT Denoising and Generalization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:745-759. [PMID: 37773896 DOI: 10.1109/tmi.2023.3320812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Low-dose computed tomography (CT) images suffer from noise and artifacts due to photon starvation and electronic noise. Recently, some works have attempted to use diffusion models to address the over-smoothness and training instability encountered by previous deep-learning-based denoising models. However, diffusion models suffer from long inference time due to a large number of sampling steps involved. Very recently, cold diffusion model generalizes classical diffusion models and has greater flexibility. Inspired by cold diffusion, this paper presents a novel COntextual eRror-modulated gEneralized Diffusion model for low-dose CT (LDCT) denoising, termed CoreDiff. First, CoreDiff utilizes LDCT images to displace the random Gaussian noise and employs a novel mean-preserving degradation operator to mimic the physical process of CT degradation, significantly reducing sampling steps thanks to the informative LDCT images as the starting point of the sampling process. Second, to alleviate the error accumulation problem caused by the imperfect restoration operator in the sampling process, we propose a novel ContextuaL Error-modulAted Restoration Network (CLEAR-Net), which can leverage contextual information to constrain the sampling process from structural distortion and modulate time step embedding features for better alignment with the input at the next time step. Third, to rapidly generalize the trained model to a new, unseen dose level with as few resources as possible, we devise a one-shot learning framework to make CoreDiff generalize faster and better using only one single LDCT image (un)paired with normal-dose CT (NDCT). Extensive experimental results on four datasets demonstrate that our CoreDiff outperforms competing methods in denoising and generalization performance, with clinically acceptable inference time. Source code is made available at https://github.com/qgao21/CoreDiff.
Collapse
|
3
|
Liu Y, Chen G, Pang S, Zeng D, Ding Y, Xie G, Ma J, He J. Cross-Domain Unpaired Learning for Low-Dose CT Imaging. IEEE J Biomed Health Inform 2023; 27:5471-5482. [PMID: 37676796 DOI: 10.1109/jbhi.2023.3312748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Supervised deep-learning techniques with paired training datasets have been widely studied for low-dose computed tomography (LDCT) imaging with excellent performance. However, the paired training datasets are usually difficult to obtain in clinical routine, which restricts the wide adoption of supervised deep-learning techniques in clinical practices. To address this issue, a general idea is to construct a pseudo paired training dataset based on the widely available unpaired data, after which, supervised deep-learning techniques can be adopted for improving the LDCT imaging performance by training on the pseudo paired training dataset. However, due to the complexity of noise properties in CT imaging, the LDCT data are difficult to generate in order to construct the pseudo paired training dataset. In this article, we propose a simple yet effective cross-domain unpaired learning framework for pseudo LDCT data generation and LDCT image reconstruction, which is denoted as CrossDuL. Specifically, a dedicated pseudo LDCT sinogram generative module is constructed based on a data-dependent noise model in the sinogram domain, and then instead of in the sinogram domain, a pseudo paired dataset is constructed in the image domain to train an LDCT image restoration module. To validate the effectiveness of the proposed framework, clinical datasets are adopted. Experimental results demonstrate that the CrossDuL framework can obtain promising LDCT imaging performance in both quantitative and qualitative measurements.
Collapse
|
4
|
Huang J, Chen K, Ren Y, Sun J, Wang Y, Tao T, Pu X. CDDnet: Cross-domain denoising network for low-dose CT image via local and global information alignment. Comput Biol Med 2023; 163:107219. [PMID: 37422942 DOI: 10.1016/j.compbiomed.2023.107219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
The domain shift problem has emerged as a challenge in cross-domain low-dose CT (LDCT) image denoising task, where the acquisition of a sufficient number of medical images from multiple sources may be constrained by privacy concerns. In this study, we propose a novel cross-domain denoising network (CDDnet) that incorporates both local and global information of CT images. To address the local component, a local information alignment module has been proposed to regularize the similarity between extracted target and source features from selected patches. To align the general information of the semantic structure from a global perspective, an autoencoder is adopted to learn the latent correlation between the source label and the estimated target label generated by the pre-trained denoiser. Experimental results demonstrate that our proposed CDDnet effectively alleviates the domain shift problem, outperforming other deep learning-based and domain adaptation-based methods under cross-domain scenarios.
Collapse
Affiliation(s)
- Jiaxin Huang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kecheng Chen
- Department of Electrical Engineering, City University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Yazhou Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Jiayu Sun
- West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, 610075, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, 610075, China
| | - Xiaorong Pu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621000, China.
| |
Collapse
|
5
|
Li M, Wang J, Chen Y, Tang Y, Wu Z, Qi Y, Jiang H, Zheng J, Tsui BMW. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2616-2630. [PMID: 37030685 DOI: 10.1109/tmi.2023.3261822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deep learning (DL) based image processing methods have been successfully applied to low-dose x-ray images based on the assumption that the feature distribution of the training data is consistent with that of the test data. However, low-dose computed tomography (LDCT) images from different commercial scanners may contain different amounts and types of image noise, violating this assumption. Moreover, in the application of DL based image processing methods to LDCT, the feature distributions of LDCT images from simulation and clinical CT examination can be quite different. Therefore, the network models trained with simulated image data or LDCT images from one specific scanner may not work well for another CT scanner and image processing task. To solve such domain adaptation problem, in this study, a novel generative adversarial network (GAN) with noise encoding transfer learning (NETL), or GAN-NETL, is proposed to generate a paired dataset with a different noise style. Specifically, we proposed a method to perform noise encoding operator and incorporate it into the generator to extract a noise style. Meanwhile, with a transfer learning (TL) approach, the image noise encoding operator transformed the noise type of the source domain to that of the target domain for realistic noise generation. One public and two private datasets are used to evaluate the proposed method. Experiment results demonstrated the feasibility and effectiveness of our proposed GAN-NETL model in LDCT image synthesis. In addition, we conduct additional image denoising study using the synthesized clinical LDCT data, which verified the merit of the proposed synthesis in improving the performance of the DL based LDCT processing method.
Collapse
|
6
|
Zhu M, Mao Z, Li D, Wang Y, Zeng D, Bian Z, Ma J. Structure-preserved meta-learning uniting network for improving low-dose CT quality. Phys Med Biol 2022; 67. [PMID: 36351294 DOI: 10.1088/1361-6560/aca194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 11/10/2022]
Abstract
Objective.Deep neural network (DNN) based methods have shown promising performances for low-dose computed tomography (LDCT) imaging. However, most of the DNN-based methods are trained on simulated labeled datasets, and the low-dose simulation algorithms are usually designed based on simple statistical models which deviate from the real clinical scenarios, which could lead to issues of overfitting, instability and poor robustness. To address these issues, in this work, we present a structure-preserved meta-learning uniting network (shorten as 'SMU-Net') to suppress noise-induced artifacts and preserve structure details in the unlabeled LDCT imaging task in real scenarios.Approach.Specifically, the presented SMU-Net contains two networks, i.e., teacher network and student network. The teacher network is trained on simulated labeled dataset and then helps the student network train with the unlabeled LDCT images via the meta-learning strategy. The student network is trained on real LDCT dataset with the pseudo-labels generated by the teacher network. Moreover, the student network adopts the Co-teaching strategy to improve the robustness of the presented SMU-Net.Main results.We validate the proposed SMU-Net method on three public datasets and one real low-dose dataset. The visual image results indicate that the proposed SMU-Net has superior performance on reducing noise-induced artifacts and preserving structure details. And the quantitative results exhibit that the presented SMU-Net method generally obtains the highest signal-to-noise ratio (PSNR), the highest structural similarity index measurement (SSIM), and the lowest root-mean-square error (RMSE) values or the lowest natural image quality evaluator (NIQE) scores.Significance.We propose a meta learning strategy to obtain high-quality CT images in the LDCT imaging task, which is designed to take advantage of unlabeled CT images to promote the reconstruction performance in the LDCT environments.
Collapse
Affiliation(s)
- Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zerui Mao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Danyang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|