1
|
Li YJ, Zhang WJ, Zhan CL, Chen KJ, Xue CD, Wang Y, Chen XM, Qin KR. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Electrophoresis 2021; 42:2264-2272. [PMID: 34278592 DOI: 10.1002/elps.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022]
Abstract
Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.
Collapse
Affiliation(s)
- Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Wen-Jia Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, P. R. China
| | - Chen-Lin Zhan
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Ke-Jie Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Kai-Rong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
2
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Chen ZZ, Yuan WM, Xiang C, Zeng DP, Liu B, Qin KR. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells. Biomech Model Mechanobiol 2018; 18:189-202. [PMID: 30187350 DOI: 10.1007/s10237-018-1076-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/28/2022]
Abstract
Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the adherent vascular endothelial cells (VECs) on the bottom of microchannel with WSS signal alone, ATP signal alone, and different combinations of WSS and ATP signals, is proposed based upon the principles of fluid mechanics and mass transfer. The spatiotemporal profiles of extracellular ATP signals from numerical simulation and experiment studies validate the implementation of our design. The intracellular calcium dynamics of VECs in response to either WSS signal or ATP signal alone, and different combinations of WSS and ATP signals have been investigated. It is found that the synergistic effect of the WSS and ATP signals plays a more significant role in the signal transduction of VECs rather than that from either WSS signal or ATP signal alone. In particular, under the combined stimuli of WSS and ATP signals with different amplitudes and frequencies, the amplitudes and frequencies of the intracellular Ca2+ dynamic signals are observed to be closely related to the amplitudes and frequencies of WSS or ATP signals.
Collapse
Affiliation(s)
- Zong-Zheng Chen
- School of Optoelectronic Engineering and Instrumentation Science and School of Biomedical Engineering, Dalian University of Technology, No. 2, Linggong Rd, Dalian, 116024, Liaoning Province, China.,First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), No.3002,Sungang Rd, Shenzhen, 518035, Guangdong Province, China
| | - Wei-Mo Yuan
- School of Optoelectronic Engineering and Instrumentation Science and School of Biomedical Engineering, Dalian University of Technology, No. 2, Linggong Rd, Dalian, 116024, Liaoning Province, China
| | - Cheng Xiang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - De-Pei Zeng
- School of Optoelectronic Engineering and Instrumentation Science and School of Biomedical Engineering, Dalian University of Technology, No. 2, Linggong Rd, Dalian, 116024, Liaoning Province, China
| | - Bo Liu
- School of Optoelectronic Engineering and Instrumentation Science and School of Biomedical Engineering, Dalian University of Technology, No. 2, Linggong Rd, Dalian, 116024, Liaoning Province, China
| | - Kai-Rong Qin
- School of Optoelectronic Engineering and Instrumentation Science and School of Biomedical Engineering, Dalian University of Technology, No. 2, Linggong Rd, Dalian, 116024, Liaoning Province, China.
| |
Collapse
|
4
|
Chen ZZ, Gao ZM, Zeng DP, Liu B, Luan Y, Qin KR. A Y-Shaped Microfluidic Device to Study the Combined Effect of Wall Shear Stress and ATP Signals on Intracellular Calcium Dynamics in Vascular Endothelial Cells. MICROMACHINES 2016; 7:mi7110213. [PMID: 30404384 PMCID: PMC6190056 DOI: 10.3390/mi7110213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/02/2022]
Abstract
The intracellular calcium dynamics in vascular endothelial cells (VECs) in response to wall shear stress (WSS) and/or adenosine triphosphate (ATP) have been commonly regarded as an important factor in regulating VEC function and behavior including proliferation, migration and apoptosis. However, the effects of time-varying ATP signals have been usually neglected in the past investigations in the field of VEC mechanobiology. In order to investigate the combined effects of WSS and dynamic ATP signals on the intracellular calcium dynamic in VECs, a Y-shaped microfluidic device, which can provide the cultured cells on the bottom of its mixing micro-channel with stimuli of WSS signal alone and different combinations of WSS and ATP signals in one single micro-channel, is proposed. Both numerical simulation and experimental studies verify the feasibility of its application. Cellular experimental results also suggest that a combination of WSS and ATP signals rather than a WSS signal alone might play a more significant role in VEC Ca2+ signal transduction induced by blood flow.
Collapse
Affiliation(s)
- Zong-Zheng Chen
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Zheng-Ming Gao
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - De-Pei Zeng
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Kai-Rong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Li YJ, Li Y, Cao T, Qin KR. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion. J Biomech Eng 2014; 135:121011. [PMID: 24141448 DOI: 10.1115/1.4025774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/08/2022]
Abstract
Dynamic biochemical signal control is important in in vitro cell studies. This work analyzes the transportation of dynamic biochemical signals in steady and mixing flow in a shallow, Y-shaped microfluidic channel. The characteristics of transportation of different signals are investigated, and the combined effect of transverse diffusion and longitudinal dispersion is studied. A method is presented to control the widths of two steady flows in the mixing channel from two inlets. The transfer function and the cutoff frequency of the mixing channel as a transmission system are presented by analytically solving the governing equations for the time-dependent Taylor-Aris dispersion and molecular diffusion. The amplitude and phase spectra show that the mixing Y-shaped microfluidic channel acts as a low-pass filter due to the longitudinal dispersion. With transverse molecular diffusion, the magnitudes of the output dynamic signal are reduced compared to those without transverse molecular diffusion. The inverse problem of signal transportation for signal control is also solved and analyzed.
Collapse
|
6
|
Abstract
With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution, and sensitivity to support systems-based approaches to biological understanding.
Collapse
Affiliation(s)
- Mei Zhan
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Loice Chingozha
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Watanabe K, Matsuura K, Kawata F, Nagata K, Ning J, Kano H. Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. BIOMEDICAL OPTICS EXPRESS 2012; 3:354-9. [PMID: 22312587 PMCID: PMC3269851 DOI: 10.1364/boe.3.000354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 05/20/2023]
Abstract
We observe adhesion sites of a cell on a substrate with high resolution. Since this observation requires interfacial measurements between the cell and the substrate, we employ scanning localized surface plasmon microscopy. We experimentally show that focal adhesion sites of a mouse muscle cell can be observed without fluorescent labeling. We also show that a non-scanning surface plasmon microscope combined with the scanning localized surface plasmon microscope contributes to observing an entire cell adhesion site and identify regions of interest.
Collapse
Affiliation(s)
- Koyo Watanabe
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku Okayama 700-8530, Japan
| | - Koji Matsuura
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku Okayama 700-8530, Japan
| | - Fukukazu Kawata
- Division of Information and Electronic Engineering, Graduate School of Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| | - Kotaro Nagata
- Division of Information and Electronic Engineering, Graduate School of Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| | - Jun Ning
- Division of Engineering for Composite Functions, Graduate School of Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| | - Hiroshi Kano
- Division of Information and Electronic Engineering, Graduate School of Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
- Division of Engineering for Composite Functions, Graduate School of Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| |
Collapse
|
8
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|