1
|
Liu X, Gennerich A. Insect Cell-Based Expression of Cytoskeletal Motor Proteins for Single-Molecule Studies. Methods Mol Biol 2024; 2694:69-90. [PMID: 37824000 PMCID: PMC10880877 DOI: 10.1007/978-1-0716-3377-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Inoue D, Ohashi K, Takasuka TE, Kakugo A. In Vitro Synthesis and Design of Kinesin Biomolecular Motors by Cell-Free Protein Synthesis. ACS Synth Biol 2023; 12:1624-1631. [PMID: 37219894 DOI: 10.1021/acssynbio.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kinesin is a biomolecular motor that generates force and motility along microtubule cytoskeletons in cells. Owing to their ability to manipulate cellular nanoscale components, microtubule/kinesin systems show great promise as actuators of nanodevices. However, classical in vivo protein production has some limitations for the design and production of kinesins. Designing and producing kinesins is laborious, and conventional protein production requires specific facilities to create and contain recombinant organisms. Here, we demonstrated the in vitro synthesis and editing of functional kinesins using a wheat germ cell-free protein synthesis system. The synthesized kinesins propelled microtubules on a kinesin-coated substrate and showed a higher binding affinity with microtubules than E. coli-produced kinesins. We also successfully incorporated affinity tags into the kinesins by extending the original sequence of the DNA template by PCR. Our method will accelerate the study of biomolecular motor systems and encourage their wider use in various nanotechnology applications.
Collapse
Affiliation(s)
- Daisuke Inoue
- Faculty of Design, Kyushu University, Room 605, Building 3, Shiobaru 4-9-1, Minami-Ku, Fukuoka 815-8540, Japan
| | - Keisuke Ohashi
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0810, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0810, Japan
| | - Taichi E Takasuka
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0810, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Meinecke CR, Heldt G, Blaudeck T, Lindberg FW, van Delft FCMJM, Rahman MA, Salhotra A, Månsson A, Linke H, Korten T, Diez S, Reuter D, Schulz SE. Nanolithographic Fabrication Technologies for Network-Based Biocomputation Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1046. [PMID: 36770052 PMCID: PMC9920894 DOI: 10.3390/ma16031046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Network-based biocomputation (NBC) relies on accurate guiding of biological agents through nanofabricated channels produced by lithographic patterning techniques. Here, we report on the large-scale, wafer-level fabrication of optimized microfluidic channel networks (NBC networks) using electron-beam lithography as the central method. To confirm the functionality of these NBC networks, we solve an instance of a classical non-deterministic-polynomial-time complete ("NP-complete") problem, the subset-sum problem. The propagation of cytoskeletal filaments, e.g., molecular motor-propelled microtubules or actin filaments, relies on a combination of physical and chemical guiding along the channels of an NBC network. Therefore, the nanofabricated channels have to fulfill specific requirements with respect to the biochemical treatment as well as the geometrical confienement, with walls surrounding the floors where functional molecular motors attach. We show how the material stack used for the NBC network can be optimized so that the motor-proteins attach themselves in functional form only to the floor of the channels. Further optimizations in the nanolithographic fabrication processes greatly improve the smoothness of the channel walls and floors, while optimizations in motor-protein expression and purification improve the activity of the motor proteins, and therefore, the motility of the filaments. Together, these optimizations provide us with the opportunity to increase the reliability of our NBC devices. In the future, we expect that these nanolithographic fabrication technologies will enable production of large-scale NBC networks intended to solve substantially larger combinatorial problems that are currently outside the capabilities of conventional software-based solvers.
Collapse
Affiliation(s)
- Christoph R. Meinecke
- Center for Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department Nano Device Technologies, Fraunhofer Institute for Electronic Nano Systems (ENAS), 09126 Chemnitz, Germany
| | - Georg Heldt
- Department Nano Device Technologies, Fraunhofer Institute for Electronic Nano Systems (ENAS), 09126 Chemnitz, Germany
| | - Thomas Blaudeck
- Center for Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department Nano Device Technologies, Fraunhofer Institute for Electronic Nano Systems (ENAS), 09126 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Frida W. Lindberg
- NanoLund and Solid State Physics, Lund University, 22100 Lund, Sweden
| | | | | | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, 22100 Lund, Sweden
| | - Till Korten
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Danny Reuter
- Center for Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department Nano Device Technologies, Fraunhofer Institute for Electronic Nano Systems (ENAS), 09126 Chemnitz, Germany
| | - Stefan E. Schulz
- Center for Microtechnologies, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department Nano Device Technologies, Fraunhofer Institute for Electronic Nano Systems (ENAS), 09126 Chemnitz, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
4
|
Soppina P, Patel N, Shewale DJ, Rai A, Sivaramakrishnan S, Naik PK, Soppina V. Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs. BMC Biol 2022; 20:177. [PMID: 35948971 PMCID: PMC9364601 DOI: 10.1186/s12915-022-01370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood. RESULTS We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family. CONCLUSIONS Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.
Collapse
Affiliation(s)
- Pushpanjali Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Nishaben Patel
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Dipeshwari J Shewale
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Ashim Rai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
5
|
Reuther C, Santos-Otte P, Grover R, Heldt G, Woehlke G, Diez S. Multiplication of Motor-Driven Microtubules for Nanotechnological Applications. NANO LETTERS 2022; 22:926-934. [PMID: 35050639 DOI: 10.1021/acs.nanolett.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microtubules gliding on motor-functionalized surfaces have been explored for various nanotechnological applications. However, when moving over large distances (several millimeters) and long times (tens of minutes), microtubules are lost due to surface detachment. Here, we demonstrate the multiplication of kinesin-1-driven microtubules that comprises two concurrent processes: (i) severing of microtubules by the enzyme spastin and (ii) elongation of microtubules by self-assembly of tubulin dimers at the microtubule ends. We managed to balance the individual processes such that the average length of the microtubules stayed roughly constant over time while their number increased. Moreover, we show microtubule multiplication in physical networks with topographical channel structures. Our method is expected to broaden the toolbox for microtubule-based in vitro applications by counteracting the microtubule loss from substrate surfaces. Among others, this will enable upscaling of network-based biocomputation, where it is vital to increase the number of microtubules during operation.
Collapse
Affiliation(s)
- Cordula Reuther
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Paula Santos-Otte
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Rahul Grover
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Georg Heldt
- Fraunhofer Institute for Electronic Nano Systems, 09126 Chemnitz, Germany
| | - Günther Woehlke
- Center for Functional Protein Assemblies, Technische Universität München, 85748 Garching, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
6
|
Ferro LS, Fang Q, Eshun-Wilson L, Fernandes J, Jack A, Farrell DP, Golcuk M, Huijben T, Costa K, Gur M, DiMaio F, Nogales E, Yildiz A. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 2022; 375:326-331. [PMID: 35050657 PMCID: PMC8985661 DOI: 10.1126/science.abf6154] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule (MT)-associated protein 7 (MAP7) is a required cofactor for kinesin-1-driven transport of intracellular cargoes. Using cryo-electron microscopy and single-molecule imaging, we investigated how MAP7 binds MTs and facilitates kinesin-1 motility. The MT-binding domain (MTBD) of MAP7 bound MTs as an extended α helix between the protofilament ridge and the site of lateral contact. Unexpectedly, the MTBD partially overlapped with the binding site of kinesin-1 and inhibited its motility. However, by tethering kinesin-1 to the MT, the projection domain of MAP7 prevented dissociation of the motor and facilitated its binding to available neighboring sites. The inhibitory effect of the MTBD dominated as MTs became saturated with MAP7. Our results reveal biphasic regulation of kinesin-1 by MAP7 in the context of their competitive binding to MTs.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Qianglin Fang
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Lisa Eshun-Wilson
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | | | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Teun Huijben
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | | | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Eva Nogales
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Howard Hughes Medical Institute, Chevy Chase MD, USA
| | - Ahmet Yildiz
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Physics Department, University of California, Berkeley CA, USA
| |
Collapse
|
7
|
VanDelinder V, Bachand GD. Characterizing the Number of Kinesin Motors Bound to Microtubules in the Gliding Motility Assay Using FLIC Microscopy. Methods Mol Biol 2022; 2430:93-104. [PMID: 35476327 DOI: 10.1007/978-1-0716-1983-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracellular transport by kinesin motors moving along their associated cytoskeletal filaments, microtubules, is essential to many biological processes. This active transport system can be reconstituted in vitro with the surface-adhered motors transporting the microtubules across a planar surface. In this geometry, the kinesin-microtubule system has been used to study active self-assembly, to power microdevices, and to perform analyte detection. Fundamental to these applications is the ability to characterize the interactions between the surface tethered motors and microtubules. Fluorescence Interference Contrast (FLIC) microscopy can illuminate the height of the microtubule above a surface, which, at sufficiently low surface densities of kinesin, also reveals the number, locations, and dynamics of the bound motors.
Collapse
Affiliation(s)
- Virginia VanDelinder
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, Mexico
| | - George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, Mexico.
| |
Collapse
|
8
|
Seifert A, Drechsler H, Japtok J, Korten T, Diez S, Hermann A. The ALS-Associated FUS (P525L) Variant Does Not Directly Interfere with Microtubule-Dependent Kinesin-1 Motility. Int J Mol Sci 2021; 22:2422. [PMID: 33670886 PMCID: PMC7957795 DOI: 10.3390/ijms22052422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Deficient intracellular transport is a common pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the fused-in-sarcoma (FUS) gene are one of the most common genetic causes for familial ALS. Motor neurons carrying a mutation in the nuclear localization sequence of FUS (P525L) show impaired axonal transport of several organelles, suggesting that mislocalized cytoplasmic FUS might directly interfere with the transport machinery. To test this hypothesis, we studied the effect of FUS on kinesin-1 motility in vitro. Using a modified microtubule gliding motility assay on surfaces coated with kinesin-1 motor proteins, we showed that neither recombinant wildtype and P525L FUS variants nor lysates from isogenic ALS-patient-specific iPSC-derived spinal motor neurons expressing those FUS variants significantly affected gliding velocities. We hence conclude that during ALS pathogenesis the initial negative effect of FUS (P525L) on axonal transport is an indirect nature and requires additional factors or mechanisms.
Collapse
Affiliation(s)
- Anne Seifert
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Hauke Drechsler
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
| | - Till Korten
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; (H.D.); (T.K.)
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; (A.S.); (J.J.)
- German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
9
|
Monzon GA, Scharrel L, DSouza A, Henrichs V, Santen L, Diez S. Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations. J Cell Sci 2020; 133:133/22/jcs249938. [PMID: 33257498 DOI: 10.1242/jcs.249938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/18/2020] [Indexed: 11/20/2022] Open
Abstract
The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.
Collapse
Affiliation(s)
- Gina A Monzon
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Lara Scharrel
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ashwin DSouza
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Verena Henrichs
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany.,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-25250 Prague West, Czech Republic
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Stefan Diez
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany .,Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| |
Collapse
|
10
|
Bassir Kazeruni NM, Rodriguez JB, Saper G, Hess H. Microtubule Detachment in Gliding Motility Assays Limits the Performance of Kinesin-Driven Molecular Shuttles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7901-7907. [PMID: 32551689 DOI: 10.1021/acs.langmuir.0c01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 μm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 μm-2 at 1 mM ATP. Even microtubules longer than 3 μm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.
Collapse
Affiliation(s)
- Neda M Bassir Kazeruni
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Juan B Rodriguez
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Gadiel Saper
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Henry Hess
- Columbia University, 351L Engineering Terrace, MC 8904 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
11
|
Rahman MA, Reuther C, Lindberg FW, Mengoni M, Salhotra A, Heldt G, Linke H, Diez S, Månsson A. Regeneration of Assembled, Molecular-Motor-Based Bionanodevices. NANO LETTERS 2019; 19:7155-7163. [PMID: 31512480 DOI: 10.1021/acs.nanolett.9b02738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The guided gliding of cytoskeletal filaments, driven by biomolecular motors on nano/microstructured chips, enables novel applications in biosensing and biocomputation. However, expensive and time-consuming chip production hampers the developments. It is therefore important to establish protocols to regenerate the chips, preferably without the need to dismantle the assembled microfluidic devices which contain the structured chips. We here describe a novel method toward this end. Specifically, we use the small, nonselective proteolytic enzyme, proteinase K to cleave all surface-adsorbed proteins, including myosin and kinesin motors. Subsequently, we apply a detergent (5% SDS or 0.05% Triton X100) to remove the protein remnants. After this procedure, fresh motor proteins and filaments can be added for new experiments. Both, silanized glass surfaces for actin-myosin motility and pure glass surfaces for microtubule-kinesin motility were repeatedly regenerated using this approach. Moreover, we demonstrate the applicability of the method for the regeneration of nano/microstructured silicon-based chips with selectively functionalized areas for supporting or suppressing gliding motility for both motor systems. The results substantiate the versatility and a promising broad use of the method for regenerating a wide range of protein-based nano/microdevices.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| | - Cordula Reuther
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | | | - Martina Mengoni
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| | - Georg Heldt
- Fraunhofer Institute for Electronic Nano Systems , Chemnitz , Germany 09126
| | | | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| |
Collapse
|
12
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Abstract
Biomolecular motors, such as the motor protein kinesin, can be used as off-the-shelf components to power hybrid nanosystems. These hybrid systems combine elements from the biological and synthetic toolbox of the nanoengineer and can be used to explore the applications and design principles of active nanosystems. Efforts to advance nanoscale engineering benefit greatly from biological and biophysical research into the operating principles of motor proteins and their biological roles. In return, the process of creating in vitro systems outside of the context of biology can lead to an improved understanding of the physical constraints creating the fitness landscape explored by evolution. However, our main focus is a holistic understanding of the engineering principles applying to systems integrating molecular motors in general. To advance this goal, we and other researchers have designed biomolecular motor-powered nanodevices, which sense, compute, and actuate. In addition to demonstrating that biological solutions can be mimicked in vitro, these devices often demonstrate new paradigms without parallels in current technology. Long-term trends in technology toward the deployment of ever smaller and more numerous motors and computers give us confidence that our work will become increasingly relevant. Here, our discussion aims to step back and look at the big picture. From our perspective, energy efficiency is a key and underappreciated metric in the design of synthetic motors. On the basis of an analogy to ecological principles, we submit that practical molecular motors have to have energy conversion efficiencies of more than 10%, a threshold only exceeded by motor proteins. We also believe that motor and system lifetime is a critical metric and an important topic of investigation. Related questions are if future molecular motors, by necessity, will resemble biomolecular motors in their softness and fragility and have to conform to the "universal performance characteristics of motors", linking the maximum force and mass of any motor, identified by Marden and Allen. The utilization of molecular motors for computing devices emphasizes the interesting relationship among the conversion of energy, extraction of work, and production of information. Our recent work touches upon these topics and discusses molecular clocks as well as a Landauer limit for robotics. What is on the horizon? Just as photovoltaics took advantage of progress in semiconductor fabrication to become commercially viable over a century, one can envision that engineers working with biomolecular motors leverage progress in biotechnology and drug development to create the engines of the future. However, the future source of energy is going to be electricity rather than fossil or biological fuels, a fact that has to be accounted for in our future efforts. In summary, we are convinced that past, ongoing, and future efforts to engineer with biomolecular motors are providing exciting demonstrations and fundamental insights as well as opportunities to wander freely across the borders of engineering, biology, and chemistry.
Collapse
Affiliation(s)
- Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
14
|
Korten T, Tavkin E, Scharrel L, Kushwaha VS, Diez S. An automated in vitro motility assay for high-throughput studies of molecular motors. LAB ON A CHIP 2018; 18:3196-3206. [PMID: 30204813 PMCID: PMC6180315 DOI: 10.1039/c8lc00547h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices. These devices are based on in vitro motility assays that reconstitute molecular transport with purified motor proteins, requiring a deep understanding of the biophysical properties of motor proteins and thorough optimization to enable motility under varying environmental conditions. Until now, these assays have been prepared manually, severely limiting throughput. To overcome this limitation, we developed an in vitro motility assay where sample preparation, imaging and data evaluation are fully automated, enabling the processing of a 384-well plate within less than three hours. We demonstrate the automated assay for the analysis of peptide inhibitors for kinesin-1 at a wide range of concentrations, revealing that the IAK domain responsible for kinesin-1 auto-inhibition is both necessary and sufficient to decrease the affinity of the motor protein for microtubules, an aspect that was hidden in previous experiments due to scarcity of data.
Collapse
Affiliation(s)
- Till Korten
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Elena Tavkin
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Lara Scharrel
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Vandana Singh Kushwaha
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| |
Collapse
|
15
|
Directionally biased sidestepping of Kip3/kinesin-8 is regulated by ATP waiting time and motor-microtubule interaction strength. Proc Natl Acad Sci U S A 2018; 115:E7950-E7959. [PMID: 30093386 DOI: 10.1073/pnas.1801820115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-8 motors, which move in a highly processive manner toward microtubule plus ends where they act as depolymerases, are essential regulators of microtubule dynamics in cells. To understand their navigation strategy on the microtubule lattice, we studied the 3D motion of single yeast kinesin-8 motors, Kip3, on freely suspended microtubules in vitro. We observed short-pitch, left-handed helical trajectories indicating that kinesin-8 motors frequently switch protofilaments in a directionally biased manner. Intriguingly, sidestepping was not directly coupled to forward stepping but rather depended on the average dwell time per forward step under limiting ATP concentrations. Based on our experimental findings and numerical simulations we propose that effective sidestepping toward the left is regulated by a bifurcation in the Kip3 step cycle, involving a transition from a two-head-bound to a one-head-bound conformation in the ATP-waiting state. Results from a kinesin-1 mutant with extended neck linker hint toward a generic sidestepping mechanism for processive kinesins, facilitating the circumvention of intracellular obstacles on the microtubule surface.
Collapse
|
16
|
Groß H, Heil HS, Ehrig J, Schwarz FW, Hecht B, Diez S. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots. NATURE NANOTECHNOLOGY 2018; 13:691-695. [PMID: 29713078 DOI: 10.1038/s41565-018-0123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude1,2. Control of such near-field light-matter interaction is essential for applications in biosensing3, light harvesting4 and quantum communication5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates7-11. However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Collapse
Affiliation(s)
- Heiko Groß
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany
| | - Hannah S Heil
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Jens Ehrig
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Friedrich W Schwarz
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- cfaed - Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
- Kurfürst-Moritz-Schule, Moritzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Wilhelm-Conrad-Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg, Germany.
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
- cfaed - Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
17
|
Kim K, Yoshinaga N, Bhattacharyya S, Nakazawa H, Umetsu M, Teizer W. Large-scale chirality in an active layer of microtubules and kinesin motor proteins. SOFT MATTER 2018; 14:3221-3231. [PMID: 29670958 DOI: 10.1039/c7sm02298k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the early developmental process of organisms, the formation of left-right laterality requires a subtle mechanism, as it is associated with other principal body axes. Any inherent chiral feature in an egg cell can in principal trigger this spontaneous breaking of chiral symmetry. Individual microtubules, major cytoskeletal filaments, are known as chiral objects. However, to date there lacks convincing evidence of a hierarchical connection of the molecular nature of microtubules to large-scale chirality, particularly at the length scale of an entire cell. Here we assemble an in vitro active layer, consisting of microtubules and kinesin motor proteins, on a glass surface. Upon inclusion of methyl cellulose, the layered system exhibits a long-range active nematic phase, characterized by the global alignment of gliding MTs. This nematic order spans over the entire system size in the millimeter range and, remarkably, allows hidden collective chirality to emerge as counterclockwise global rotation of the active MT layer. The analysis based on our theoretical model suggests that the emerging global nematic order results from the local alignment of MTs, stabilized by methyl cellulose. It also suggests that the global rotation arises from the MTs' intrinsic curvature, leading to preferential handedness. Given its flexibility, this layered in vitro cytoskeletal system enables the study of membranous protein behavior responsible for important cellular developmental processes.
Collapse
Affiliation(s)
- Kyongwan Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Chaudhuri S, Korten T, Korten S, Milani G, Lana T, Te Kronnie G, Diez S. Label-Free Detection of Microvesicles and Proteins by the Bundling of Gliding Microtubules. NANO LETTERS 2018; 18:117-123. [PMID: 29202578 DOI: 10.1021/acs.nanolett.7b03619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of miniaturized devices for the rapid and sensitive detection of analyte is crucial for various applications across healthcare, pharmaceutical, environmental, and other industries. Here, we report on the detection of unlabeled analyte by using fluorescently labeled, antibody-conjugated microtubules in a kinesin-1 gliding motility assay. The detection principle is based on the formation of fluorescent supramolecular assemblies of microtubule bundles and spools in the presence of multivalent analytes. We demonstrate the rapid, label-free detection of CD45+ microvesicles derived from leukemia cells. Moreover, we employ our platform for the label-free detection of multivalent proteins at subnanomolar concentrations, as well as for profiling the cross-reactivity between commercially available secondary antibodies. As the detection principle is based on the molecular recognition between antigen and antibody, our method can find general application where it identifies any analyte, including clinically relevant microvesicles and proteins.
Collapse
Affiliation(s)
- Samata Chaudhuri
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Till Korten
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Slobodanka Korten
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Gloria Milani
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Tobia Lana
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova , 35128 Padova, Italy
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| |
Collapse
|
19
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
20
|
Reuther C, Mittasch M, Naganathan SR, Grill SW, Diez S. Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns. NANO LETTERS 2017; 17:5699-5705. [PMID: 28819981 DOI: 10.1021/acs.nanolett.7b02606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.
Collapse
Affiliation(s)
- Cordula Reuther
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Matthäus Mittasch
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Sundar R Naganathan
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
- BIOTEC, Technische Universität Dresden , 01069 Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany
| |
Collapse
|
21
|
Chaudhuri S, Korten T, Diez S. Tetrazine–trans-cyclooctene Mediated Conjugation of Antibodies to Microtubules Facilitates Subpicomolar Protein Detection. Bioconjug Chem 2017; 28:918-922. [DOI: 10.1021/acs.bioconjchem.7b00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samata Chaudhuri
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Till Korten
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefan Diez
- B
CUBE — Center for Molecular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
22
|
Stoychev G, Reuther C, Diez S, Ionov L. Controlled Retention and Release of Biomolecular Transport Systems Using Shape-Changing Polymer Bilayers. Angew Chem Int Ed Engl 2016; 55:16106-16109. [PMID: 27882699 DOI: 10.1002/anie.201608299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/02/2016] [Indexed: 11/11/2022]
Abstract
Biomolecular transport systems based on cytoskeletal filaments and motor proteins have become promising tools for a wide range of nanotechnological applications. In this paper, we report control of such transport systems using substrates with switchable shape. We demonstrate this approach on the example of microtubules gliding on surfaces of self-folding polymer bilayers with adsorbed kinesin motors. The polymer bilayers are able to undergo reversible transitions between flat and tube-like shapes that allow the externally controlled retention and release of gliding microtubules. The demonstrated approach, based on surfaces with reconfigurable topography, opens broad perspectives to control biomolecular transport systems for bioanalytical and sensing applications, as well as for the construction of subcellular compartments in the field of synthetic biology.
Collapse
Affiliation(s)
- Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA.,Leibniz Institute of Polymer Research e.V. Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Cordula Reuther
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA.,Leibniz Institute of Polymer Research e.V. Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
23
|
Stoychev G, Reuther C, Diez S, Ionov L. Controlled Retention and Release of Biomolecular Transport Systems Using Shape-Changing Polymer Bilayers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences; University of Georgia; Athens GA 30602 USA
- Leibniz Institute of Polymer Research e.V. Dresden; Hohe Str. 6 01069 Dresden Germany
| | - Cordula Reuther
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics; 01307 Dresden Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics; 01307 Dresden Germany
| | - Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences; University of Georgia; Athens GA 30602 USA
- Leibniz Institute of Polymer Research e.V. Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|