1
|
Zhang Y, Tian X, Wang Z, Wang H, Liu F, Long Q, Jiang S. Advanced applications of DNA nanostructures dominated by DNA origami in antitumor drug delivery. Front Mol Biosci 2023; 10:1239952. [PMID: 37609372 PMCID: PMC10440542 DOI: 10.3389/fmolb.2023.1239952] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA origami is a cutting-edge DNA self-assembly technique that neatly folds DNA strands and creates specific structures based on the complementary base pairing principle. These innovative DNA origami nanostructures provide numerous benefits, including lower biotoxicity, increased stability, and superior adaptability, making them an excellent choice for transporting anti-tumor agents. Furthermore, they can considerably reduce side effects and improve therapy success by offering precise, targeted, and multifunctional drug delivery system. This comprehensive review looks into the principles and design strategies of DNA origami, providing valuable insights into this technology's latest research achievements and development trends in the field of anti-tumor drug delivery. Additionally, we review the key function and major benefits of DNA origami in cancer treatment, some of these approaches also involve aspects related to DNA tetrahedra, aiming to provide novel ideas and effective solutions to address drug delivery challenges in cancer therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Qipeng Long
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
3
|
Gupta A, Soni S, Chauhan N, Khanuja M, Jain U. Nanobots-based advancement in targeted drug delivery and imaging: An update. J Control Release 2022; 349:97-108. [PMID: 35718213 DOI: 10.1016/j.jconrel.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
Manipulation and targeted navigation of nanobots in complex biological conditions can be achieved by chemical reactions, by applying external forces, and via motile cells. Several studies have applied fuel-based and fuel-free propulsion mechanisms for nanobots movements in environmental sciences and robotics. However, their applications in biomedical sciences are still in the budding phase. Therefore, the current review introduces the fundamentals of different propulsion strategies based on the advantageous features of applied nanomaterials or cellular components. Furthermore, the recent developments reported in various literatures on next-generation nanobots, such as Xenobots with applications of in-vitro and in-vivo drug delivery and imaging were also explored in detail. The challenges and the future prospects are also highlighted with corresponding advantages and limitations of nanobots in biomedical applications. This review concludes that with ever booming research enthusiasm in this field and increasing multidisciplinary cooperation, micro-/nanorobots with intelligence and multifunctions will emerge in the near future, which would have a profound impact on the treatment of diseases.
Collapse
Affiliation(s)
- Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Manika Khanuja
- Centre for Nanoscience & Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India.
| |
Collapse
|
4
|
Meng X, Li X, Wang X. A Computationally Virtual Histological Staining Method to Ovarian Cancer Tissue by Deep Generative Adversarial Networks. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4244157. [PMID: 34306174 PMCID: PMC8270697 DOI: 10.1155/2021/4244157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Histological analysis to tissue samples is elemental for diagnosing the risk and severity of ovarian cancer. The commonly used Hematoxylin and Eosin (H&E) staining method involves complex steps and strict requirements, which would seriously impact the research of histological analysis of the ovarian cancer. Virtual histological staining by the Generative Adversarial Network (GAN) provides a feasible way for these problems, yet it is still a challenge of using deep learning technology since the amounts of data available are quite limited for training. Based on the idea of GAN, we propose a weakly supervised learning method to generate autofluorescence images of unstained ovarian tissue sections corresponding to H&E staining sections of ovarian tissue. Using the above method, we constructed the supervision conditions for the virtual staining process, which makes the image quality synthesized in the subsequent virtual staining stage more perfect. Through the doctors' evaluation of our results, the accuracy of ovarian cancer unstained fluorescence image generated by our method reached 93%. At the same time, we evaluated the image quality of the generated images, where the FID reached 175.969, the IS score reached 1.311, and the MS reached 0.717. Based on the image-to-image translation method, we use the data set constructed in the previous step to implement a virtual staining method that is accurate to tissue cells. The accuracy of staining through the doctor's assessment reached 97%. At the same time, the accuracy of visual evaluation based on deep learning reached 95%.
Collapse
Affiliation(s)
- Xiangyu Meng
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580 Shandong, China
- College of Computer and Information Science, Inner Mongolia Agricultural University, Huhhot, 010018 Inner Mongolia, China
| | - Xin Li
- Department of Gynecology 2, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
| | - Xun Wang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580 Shandong, China
- China High Performance Computer Research Center, Institute of Computer Technology, Chinese Academy of Science, Beijing, 100190 Beijing, China
| |
Collapse
|
5
|
Shanaa OA, Rumyantsev A, Sambuk E, Padkina M. In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules 2021; 26:molecules26051422. [PMID: 33800717 PMCID: PMC7961669 DOI: 10.3390/molecules26051422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.
Collapse
Affiliation(s)
- Ousama Al Shanaa
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Atomic Energy Commission of Syria, Damascus P.O.B 6091, Syria
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| | - Andrey Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Elena Sambuk
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Marina Padkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| |
Collapse
|
6
|
Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020; 12:E665. [PMID: 32679772 PMCID: PMC7407549 DOI: 10.3390/pharmaceutics12070665] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Micro/nanorobot, as a research field, has attracted interest in recent years. It has great potential in medical treatment, as it can be applied in targeted drug delivery, surgical operation, disease diagnosis, etc. Differently from traditional drug delivery, which relies on blood circulation to reach the target, the designed micro/nanorobots can move autonomously, which makes it possible to deliver drugs to the hard-to-reach areas. Micro/nanorobots were driven by exogenous power (magnetic fields, light energy, acoustic fields, electric fields, etc.) or endogenous power (chemical reaction energy). Cell-based micro/nanorobots and DNA origami without autonomous movement ability were also introduced in this article. Although micro/nanorobots have excellent prospects, the current research is mainly based on in vitro experiments; in vivo research is still in its infancy. Further biological experiments are required to verify in vivo drug delivery effects of micro/nanorobots. This paper mainly discusses the research status, challenges, and future development of micro/nanorobots.
Collapse
Affiliation(s)
- Mengyi Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wenwei Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Xiuping Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (X.C.)
| |
Collapse
|
7
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|