1
|
Jia Z, You K, He W, Tian Y, Feng Y, Wang Y, Jia X, Lou Y, Zhang J, Li G, Zhang Z. Event-based Semantic Segmentation with Posterior Attention. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; PP:1829-1842. [PMID: 37028052 DOI: 10.1109/tip.2023.3249579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the past years, attention-based Transformers have swept across the field of computer vision, starting a new stage of backbones in semantic segmentation. Nevertheless, semantic segmentation under poor light conditions remains an open problem. Moreover, most papers about semantic segmentation work on images produced by commodity frame-based cameras with a limited framerate, hindering their deployment to auto-driving systems that require instant perception and response at milliseconds. An event camera is a new sensor that generates event data at microseconds and can work in poor light conditions with a high dynamic range. It looks promising to leverage event cameras to enable perception where commodity cameras are incompetent, but algorithms for event data are far from mature. Pioneering researchers stack event data as frames so that event-based segmentation is converted to framebased segmentation, but characteristics of event data are not explored. Noticing that event data naturally highlight moving objects, we propose a posterior attention module that adjusts the standard attention by the prior knowledge provided by event data. The posterior attention module can be readily plugged into many segmentation backbones. Plugging the posterior attention module into a recently proposed SegFormer network, we get EvSegFormer (the event-based version of SegFormer) with state-of-the-art performance in two datasets (MVSEC and DDD-17) collected for event-based segmentation. Code is available at https://github.com/zexiJia/EvSegFormer to facilitate research on event-based vision.
Collapse
|
2
|
Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, Leutenegger S, Davison AJ, Conradt J, Daniilidis K, Scaramuzza D. Event-Based Vision: A Survey. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:154-180. [PMID: 32750812 DOI: 10.1109/tpami.2020.3008413] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of μs), very high dynamic range (140 dB versus 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.
Collapse
|
3
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Tayarani-Najaran MH, Schmuker M. Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review. Front Neural Circuits 2021; 15:610446. [PMID: 34135736 PMCID: PMC8203204 DOI: 10.3389/fncir.2021.610446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field.
Collapse
Affiliation(s)
| | - Michael Schmuker
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
5
|
Xiao R, Tang H, Ma Y, Yan R, Orchard G. An Event-Driven Categorization Model for AER Image Sensors Using Multispike Encoding and Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3649-3657. [PMID: 31714243 DOI: 10.1109/tnnls.2019.2945630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we present a systematic computational model to explore brain-based computation for object recognition. The model extracts temporal features embedded in address-event representation (AER) data and discriminates different objects by using spiking neural networks (SNNs). We use multispike encoding to extract temporal features contained in the AER data. These temporal patterns are then learned through the tempotron learning rule. The presented model is consistently implemented in a temporal learning framework, where the precise timing of spikes is considered in the feature-encoding and learning process. A noise-reduction method is also proposed by calculating the correlation of an event with the surrounding spatial neighborhood based on the recently proposed time-surface technique. The model evaluated on wide spectrum data sets (MNIST, N-MNIST, MNIST-DVS, AER Posture, and Poker Card) demonstrates its superior recognition performance, especially for the events with noise.
Collapse
|
6
|
A High-Speed Low-Cost VLSI System Capable of On-Chip Online Learning for Dynamic Vision Sensor Data Classification. SENSORS 2020; 20:s20174715. [PMID: 32825560 PMCID: PMC7506740 DOI: 10.3390/s20174715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022]
Abstract
This paper proposes a high-speed low-cost VLSI system capable of on-chip online learning for classifying address-event representation (AER) streams from dynamic vision sensor (DVS) retina chips. The proposed system executes a lightweight statistic algorithm based on simple binary features extracted from AER streams and a Random Ferns classifier to classify these features. The proposed system’s characteristics of multi-level pipelines and parallel processing circuits achieves a high throughput up to 1 spike event per clock cycle for AER data processing. Thanks to the nature of the lightweight algorithm, our hardware system is realized in a low-cost memory-centric paradigm. In addition, the system is capable of on-chip online learning to flexibly adapt to different in-situ application scenarios. The extra overheads for on-chip learning in terms of time and resource consumption are quite low, as the training procedure of the Random Ferns is quite simple, requiring few auxiliary learning circuits. An FPGA prototype of the proposed VLSI system was implemented with 9.5~96.7% memory consumption and <11% computational and logic resources on a Xilinx Zynq-7045 chip platform. It was running at a clock frequency of 100 MHz and achieved a peak processing throughput up to 100 Meps (Mega events per second), with an estimated power consumption of 690 mW leading to a high energy efficiency of 145 Meps/W or 145 event/μJ. We tested the prototype system on MNIST-DVS, Poker-DVS, and Posture-DVS datasets, and obtained classification accuracies of 77.9%, 99.4% and 99.3%, respectively. Compared to prior works, our VLSI system achieves higher processing speeds, higher computing efficiency, comparable accuracy, and lower resource costs.
Collapse
|
7
|
Kheradpisheh SR, Masquelier T. Temporal Backpropagation for Spiking Neural Networks with One Spike per Neuron. Int J Neural Syst 2020; 30:2050027. [DOI: 10.1142/s0129065720500276] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We propose a new supervised learning rule for multilayer spiking neural networks (SNNs) that use a form of temporal coding known as rank-order-coding. With this coding scheme, all neurons fire exactly one spike per stimulus, but the firing order carries information. In particular, in the readout layer, the first neuron to fire determines the class of the stimulus. We derive a new learning rule for this sort of network, named S4NN, akin to traditional error backpropagation, yet based on latencies. We show how approximated error gradients can be computed backward in a feedforward network with any number of layers. This approach reaches state-of-the-art performance with supervised multi-fully connected layer SNNs: test accuracy of 97.4% for the MNIST dataset, and 99.2% for the Caltech Face/Motorbike dataset. Yet, the neuron model that we use, nonleaky integrate-and-fire, is much simpler than the one used in all previous works. The source codes of the proposed S4NN are publicly available at https://github.com/SRKH/S4NN .
Collapse
Affiliation(s)
- Saeed Reza Kheradpisheh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
8
|
Maro JM, Ieng SH, Benosman R. Event-Based Gesture Recognition With Dynamic Background Suppression Using Smartphone Computational Capabilities. Front Neurosci 2020; 14:275. [PMID: 32327968 PMCID: PMC7160298 DOI: 10.3389/fnins.2020.00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, we introduce a framework for dynamic gesture recognition with background suppression operating on the output of a moving event-based camera. The system is developed to operate in real-time using only the computational capabilities of a mobile phone. It introduces a new development around the concept of time-surfaces. It also presents a novel event-based methodology to dynamically remove backgrounds that uses the high temporal resolution properties of event-based cameras. To our knowledge, this is the first Android event-based framework for vision-based recognition of dynamic gestures running on a smartphone without off-board processing. We assess the performances by considering several scenarios in both indoors and outdoors, for static and dynamic conditions, in uncontrolled lighting conditions. We also introduce a new event-based dataset for gesture recognition with static and dynamic backgrounds (made publicly available). The set of gestures has been selected following a clinical trial to allow human-machine interaction for the visually impaired and older adults. We finally report comparisons with prior work that addressed event-based gesture recognition reporting comparable results, without the use of advanced classification techniques nor power greedy hardware.
Collapse
Affiliation(s)
| | - Sio-Hoi Ieng
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Ryad Benosman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
- Departments of Ophthalmology/ECE/BioE, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computer Science, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Abstract
Artificial intelligence (AI) has the ability of revolutionizing our lives and society in a radical way, by enabling machine learning in the industry, business, health, transportation, and many other fields. The ability to recognize objects, faces, and speech, requires, however, exceptional computational power and time, which is conflicting with the current difficulties in transistor scaling due to physical and architectural limitations. As a result, to accelerate the progress of AI, it is necessary to develop materials, devices, and systems that closely mimic the human brain. In this work, we review the current status and challenges on the emerging neuromorphic devices for brain-inspired computing. First, we provide an overview of the memory device technologies which have been proposed for synapse and neuron circuits in neuromorphic systems. Then, we describe the implementation of synaptic learning in the two main types of neural networks, namely the deep neural network and the spiking neural network (SNN). Bio-inspired learning, such as the spike-timing dependent plasticity scheme, is shown to enable unsupervised learning processes which are typical of the human brain. Hardware implementations of SNNs for the recognition of spatial and spatio-temporal patterns are also shown to support the cognitive computation in silico. Finally, we explore the recent advances in reproducing bio-neural processes via device physics, such as insulating-metal transitions, nanoionics drift/diffusion, and magnetization flipping in spintronic devices. By harnessing the device physics in emerging materials, neuromorphic engineering with advanced functionality, higher density and better energy efficiency can be developed.
Collapse
Affiliation(s)
- Daniele Ielmini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32 - 20133 Milano, Italy
| | | |
Collapse
|
10
|
Yang S, Deng B, Wang J, Li H, Lu M, Che Y, Wei X, Loparo KA. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:148-162. [PMID: 30892250 DOI: 10.1109/tnnls.2019.2899936] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multicompartment emulation is an essential step to enhance the biological realism of neuromorphic systems and to further understand the computational power of neurons. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale biologically meaningful neural networks with one million multi-compartment neurons (CMNs). The hardware platform uses four Altera Stratix III field-programmable gate arrays, and both the cellular and the network levels are considered, which provides an efficient implementation of a large-scale spiking neural network with biophysically plausible dynamics. At the cellular level, a cost-efficient multi-CMN model is presented, which can reproduce the detailed neuronal dynamics with representative neuronal morphology. A set of efficient neuromorphic techniques for single-CMN implementation are presented with all the hardware cost of memory and multiplier resources removed and with hardware performance of computational speed enhanced by 56.59% in comparison with the classical digital implementation method. At the network level, a scalable network-on-chip (NoC) architecture is proposed with a novel routing algorithm to enhance the NoC performance including throughput and computational latency, leading to higher computational efficiency and capability in comparison with state-of-the-art projects. The experimental results demonstrate that the proposed work can provide an efficient model and architecture for large-scale biologically meaningful networks, while the hardware synthesis results demonstrate low area utilization and high computational speed that supports the scalability of the approach.
Collapse
|
11
|
Payvand M, Nair MV, Müller LK, Indiveri G. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation. Faraday Discuss 2019; 213:487-510. [PMID: 30357205 DOI: 10.1039/c8fd00114f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Memristive devices represent a promising technology for building neuromorphic electronic systems. In addition to their compactness and non-volatility, they are characterized by their computationally relevant physical properties, such as their state-dependence, non-linear conductance changes, and intrinsic variability in both their switching threshold and conductance values, that make them ideal devices for emulating the bio-physics of real synapses. In this paper we present a spiking neural network architecture that supports the use of memristive devices as synaptic elements and propose mixed-signal analog-digital interfacing circuits that mitigate the effect of variability in their conductance values and exploit their variability in the switching threshold for implementing stochastic learning. The effect of device variability is mitigated using pairs of memristive devices configured in a complementary push-pull mechanism and interfaced to a current-mode normalizer circuit. The stochastic learning mechanism is obtained by mapping the desired change in synaptic weight into a corresponding switching probability that is derived from the intrinsic stochastic behavior of memristive devices. We demonstrate the features of the CMOS circuits and apply the architecture proposed to a standard neural network hand-written digit classification benchmark based on the MNIST data-set. We evaluate the performance of the approach proposed in this benchmark using behavioral-level spiking neural network simulation, showing both the effect of the reduction in conductance variability produced by the current-mode normalizer circuit and the increase in performance as a function of the number of memristive devices used in each synapse.
Collapse
Affiliation(s)
- Melika Payvand
- Institute of Neuroinformatics, University of Zurich, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | | | | | | |
Collapse
|
12
|
Camuñas-Mesa LA, Linares-Barranco B, Serrano-Gotarredona T. Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2745. [PMID: 31461877 PMCID: PMC6747825 DOI: 10.3390/ma12172745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 11/17/2022]
Abstract
Inspired by biology, neuromorphic systems have been trying to emulate the human brain for decades, taking advantage of its massive parallelism and sparse information coding. Recently, several large-scale hardware projects have demonstrated the outstanding capabilities of this paradigm for applications related to sensory information processing. These systems allow for the implementation of massive neural networks with millions of neurons and billions of synapses. However, the realization of learning strategies in these systems consumes an important proportion of resources in terms of area and power. The recent development of nanoscale memristors that can be integrated with Complementary Metal-Oxide-Semiconductor (CMOS) technology opens a very promising solution to emulate the behavior of biological synapses. Therefore, hybrid memristor-CMOS approaches have been proposed to implement large-scale neural networks with learning capabilities, offering a scalable and lower-cost alternative to existing CMOS systems.
Collapse
Affiliation(s)
- Luis A Camuñas-Mesa
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Bernabé Linares-Barranco
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Teresa Serrano-Gotarredona
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
13
|
Hu R, Chang S, Wang H, He J, Huang Q. Efficient Multispike Learning for Spiking Neural Networks Using Probability-Modulated Timing Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1984-1997. [PMID: 30418889 DOI: 10.1109/tnnls.2018.2875471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Error functions are normally based on the distance between output spikes and target spikes in supervised learning algorithms for spiking neural networks (SNNs). Due to the discontinuous nature of the internal state of spiking neuron, it is challenging to ensure that the number of output spikes and target spikes kept identical in multispike learning. This problem is conventionally dealt with by using the smaller of the number of desired spikes and that of actual output spikes in learning. However, if this approach is used, information is lost as some spikes are neglected. In this paper, a probability-modulated timing mechanism is built on the stochastic neurons, where the discontinuous spike patterns are converted to the likelihood of generating the desired output spike trains. By applying this mechanism to a probability-modulated spiking classifier, a probability-modulated SNN (PMSNN) is constructed. In its multilayer and multispike learning structure, more inputs are incorporated and mapped to the target spike trains. A clustering rule connection mechanism is also applied to a reservoir to improve the efficiency of information transmission among synapses, which can map the highly correlated inputs to the adjacent neurons. Results of comparisons between the proposed method and popular the SNN algorithms showed that the PMSNN yields higher efficiency and requires fewer parameters.
Collapse
|
14
|
Stereo Matching in Address-Event-Representation (AER) Bio-Inspired Binocular Systems in a Field-Programmable Gate Array (FPGA). ELECTRONICS 2019. [DOI: 10.3390/electronics8040410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In stereo-vision processing, the image-matching step is essential for results, although it involves a very high computational cost. Moreover, the more information is processed, the more time is spent by the matching algorithm, and the more inefficient it is. Spike-based processing is a relatively new approach that implements processing methods by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system can solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired address-event-representation (AER) is currently achieving very high performance. The aim of this work was to study the viability of a matching mechanism in stereo-vision systems, using AER codification and its implementation in a field-programmable gate array (FPGA). Some studies have been done before in an AER system with monitored data using a computer; however, this kind of mechanism has not been implemented directly on hardware. To this end, an epipolar geometry basis applied to AER systems was studied and implemented, with other restrictions, in order to achieve good results in a real-time scenario. The results and conclusions are shown, and the viability of its implementation is proven.
Collapse
|
15
|
Haessig G, Berthelon X, Ieng SH, Benosman R. A Spiking Neural Network Model of Depth from Defocus for Event-based Neuromorphic Vision. Sci Rep 2019; 9:3744. [PMID: 30842458 PMCID: PMC6403400 DOI: 10.1038/s41598-019-40064-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/06/2019] [Indexed: 11/09/2022] Open
Abstract
Depth from defocus is an important mechanism that enables vision systems to perceive depth. While machine vision has developed several algorithms to estimate depth from the amount of defocus present at the focal plane, existing techniques are slow, energy demanding and mainly relying on numerous acquisitions and massive amounts of filtering operations on the pixels' absolute luminance value. Recent advances in neuromorphic engineering allow an alternative to this problem, with the use of event-based silicon retinas and neural processing devices inspired by the organizing principles of the brain. In this paper, we present a low power, compact and computationally inexpensive setup to estimate depth in a 3D scene in real time at high rates that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. Exploiting the high temporal resolution of the event-based silicon retina, we are able to extract depth at 100 Hz for a power budget lower than a 200 mW (10 mW for the camera, 90 mW for the liquid lens and ~100 mW for the computation). We validate the model with experimental results, highlighting features that are consistent with both computational neuroscience and recent findings in the retina physiology. We demonstrate its efficiency with a prototype of a neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological depth from defocus experiments reported in the literature.
Collapse
Affiliation(s)
- Germain Haessig
- Sorbonne Universite, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| | - Xavier Berthelon
- Sorbonne Universite, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Sio-Hoi Ieng
- Sorbonne Universite, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Ryad Benosman
- Sorbonne Universite, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,University of Pittsburgh Medical Center, Biomedical Science Tower 3, Fifth Avenue, Pittsburgh, PA, USA.,Carnegie Mellon University, Robotics Institute, 5000 Forbes Avenue, Pittsburgh, PA, 15213-3890, USA
| |
Collapse
|
16
|
Kreiser R, Aathmani D, Qiao N, Indiveri G, Sandamirskaya Y. Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Front Neurosci 2018; 12:717. [PMID: 30524218 PMCID: PMC6262404 DOI: 10.3389/fnins.2018.00717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Neuromorphic Very Large Scale Integration (VLSI) devices emulate the activation dynamics of biological neuronal networks using either mixed-signal analog/digital or purely digital electronic circuits. Using analog circuits in silicon to physically emulate the functionality of biological neurons and synapses enables faithful modeling of neural and synaptic dynamics at ultra low power consumption in real-time, and thus may serve as computational substrate for a new generation of efficient neural controllers for artificial intelligent systems. Although one of the main advantages of neural networks is their ability to perform on-line learning, only a small number of neuromorphic hardware devices implement this feature on-chip. In this work, we use a reconfigurable on-line learning spiking (ROLLS) neuromorphic processor chip to build a neuronal architecture for sequence learning. The proposed neuronal architecture uses the attractor properties of winner-takes-all (WTA) dynamics to cope with mismatch and noise in the ROLLS analog computing elements, and it uses its on-chip plasticity features to store sequences of states. We demonstrate, with a proof-of-concept feasibility study how this architecture can store, replay, and update sequences of states, induced by external inputs. Controlled by the attractor dynamics and an explicit destabilizing signal, the items in a sequence can last for varying amounts of time and thus reliable sequence learning and replay can be robustly implemented in a real sensorimotor system.
Collapse
Affiliation(s)
- Raphaela Kreiser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Dora Aathmani
- The School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ning Qiao
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yulia Sandamirskaya
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Thakur CS, Molin JL, Cauwenberghs G, Indiveri G, Kumar K, Qiao N, Schemmel J, Wang R, Chicca E, Olson Hasler J, Seo JS, Yu S, Cao Y, van Schaik A, Etienne-Cummings R. Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Front Neurosci 2018; 12:891. [PMID: 30559644 PMCID: PMC6287454 DOI: 10.3389/fnins.2018.00891] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
Neuromorphic engineering (NE) encompasses a diverse range of approaches to information processing that are inspired by neurobiological systems, and this feature distinguishes neuromorphic systems from conventional computing systems. The brain has evolved over billions of years to solve difficult engineering problems by using efficient, parallel, low-power computation. The goal of NE is to design systems capable of brain-like computation. Numerous large-scale neuromorphic projects have emerged recently. This interdisciplinary field was listed among the top 10 technology breakthroughs of 2014 by the MIT Technology Review and among the top 10 emerging technologies of 2015 by the World Economic Forum. NE has two-way goals: one, a scientific goal to understand the computational properties of biological neural systems by using models implemented in integrated circuits (ICs); second, an engineering goal to exploit the known properties of biological systems to design and implement efficient devices for engineering applications. Building hardware neural emulators can be extremely useful for simulating large-scale neural models to explain how intelligent behavior arises in the brain. The principal advantages of neuromorphic emulators are that they are highly energy efficient, parallel and distributed, and require a small silicon area. Thus, compared to conventional CPUs, these neuromorphic emulators are beneficial in many engineering applications such as for the porting of deep learning algorithms for various recognitions tasks. In this review article, we describe some of the most significant neuromorphic spiking emulators, compare the different architectures and approaches used by them, illustrate their advantages and drawbacks, and highlight the capabilities that each can deliver to neural modelers. This article focuses on the discussion of large-scale emulators and is a continuation of a previous review of various neural and synapse circuits (Indiveri et al., 2011). We also explore applications where these emulators have been used and discuss some of their promising future applications.
Collapse
Affiliation(s)
- Chetan Singh Thakur
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Jamal Lottier Molin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Gert Cauwenberghs
- Department of Bioengineering and Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Kundan Kumar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Ning Qiao
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Johannes Schemmel
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Runchun Wang
- The MARCS Institute, Western Sydney University, Kingswood, NSW, Australia
| | - Elisabetta Chicca
- Cognitive Interaction Technology – Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Jennifer Olson Hasler
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jae-sun Seo
- School of Electrical, Computer and Engineering, Arizona State University, Tempe, AZ, United States
| | - Shimeng Yu
- School of Electrical, Computer and Engineering, Arizona State University, Tempe, AZ, United States
| | - Yu Cao
- School of Electrical, Computer and Engineering, Arizona State University, Tempe, AZ, United States
| | - André van Schaik
- The MARCS Institute, Western Sydney University, Kingswood, NSW, Australia
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
18
|
Pfeiffer M, Pfeil T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front Neurosci 2018; 12:774. [PMID: 30410432 PMCID: PMC6209684 DOI: 10.3389/fnins.2018.00774] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Spiking neural networks (SNNs) are inspired by information processing in biology, where sparse and asynchronous binary signals are communicated and processed in a massively parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such as low power consumption, fast inference, and event-driven information processing. This makes them interesting candidates for the efficient implementation of deep neural networks, the method of choice for many machine learning tasks. In this review, we address the opportunities that deep spiking networks offer and investigate in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware. A wide range of training methods for SNNs is presented, ranging from the conversion of conventional deep networks into SNNs, constrained training before conversion, spiking variants of backpropagation, and biologically motivated variants of STDP. The goal of our review is to define a categorization of SNN training methods, and summarize their advantages and drawbacks. We further discuss relationships between SNNs and binary networks, which are becoming popular for efficient digital hardware implementation. Neuromorphic hardware platforms have great potential to enable deep spiking networks in real-world applications. We compare the suitability of various neuromorphic systems that have been developed over the past years, and investigate potential use cases. Neuromorphic approaches and conventional machine learning should not be considered simply two solutions to the same classes of problems, instead it is possible to identify and exploit their task-specific advantages. Deep SNNs offer great opportunities to work with new types of event-based sensors, exploit temporal codes and local on-chip learning, and we have so far just scratched the surface of realizing these advantages in practical applications.
Collapse
Affiliation(s)
- Michael Pfeiffer
- Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Germany
| | | |
Collapse
|
19
|
Yousefzadeh A, Stromatias E, Soto M, Serrano-Gotarredona T, Linares-Barranco B. On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights. Front Neurosci 2018; 12:665. [PMID: 30374283 PMCID: PMC6196279 DOI: 10.3389/fnins.2018.00665] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/04/2018] [Indexed: 11/21/2022] Open
Abstract
In computational neuroscience, synaptic plasticity learning rules are typically studied using the full 64-bit floating point precision computers provide. However, for dedicated hardware implementations, the precision used not only penalizes directly the required memory resources, but also the computing, communication, and energy resources. When it comes to hardware engineering, a key question is always to find the minimum number of necessary bits to keep the neurocomputational system working satisfactorily. Here we present some techniques and results obtained when limiting synaptic weights to 1-bit precision, applied to a Spike-Timing-Dependent-Plasticity (STDP) learning rule in Spiking Neural Networks (SNN). We first illustrate the 1-bit synapses STDP operation by replicating a classical biological experiment on visual orientation tuning, using a simple four neuron setup. After this, we apply 1-bit STDP learning to the hidden feature extraction layer of a 2-layer system, where for the second (and output) layer we use already reported SNN classifiers. The systems are tested on two spiking datasets: a Dynamic Vision Sensor (DVS) recorded poker card symbols dataset and a Poisson-distributed spike representation MNIST dataset version. Tests are performed using the in-house MegaSim event-driven behavioral simulator and by implementing the systems on FPGA (Field Programmable Gate Array) hardware.
Collapse
Affiliation(s)
- Amirreza Yousefzadeh
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Evangelos Stromatias
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Miguel Soto
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain
| | | | - Bernabé Linares-Barranco
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
20
|
Chakraborty I, Roy D, Roy K. Technology Aware Training in Memristive Neuromorphic Systems for Nonideal Synaptic Crossbars. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2018. [DOI: 10.1109/tetci.2018.2829919] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Zheng N, Mazumder P. Online Supervised Learning for Hardware-Based Multilayer Spiking Neural Networks Through the Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:4287-4302. [PMID: 29990088 DOI: 10.1109/tnnls.2017.2761335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we propose an online learning algorithm for supervised learning in multilayer spiking neural networks (SNNs). It is found that the spike timings of neurons in an SNN can be exploited to estimate the gradients that are associated with each synapse. With the proposed method of estimating gradients, learning similar to the stochastic gradient descent process employed in a conventional artificial neural network (ANN) can be achieved. In addition to the conventional layer-by-layer backpropagation, a one-pass direct backpropagation is possible using the proposed learning algorithm. Two neural networks, with one and two hidden layers, are employed as examples to demonstrate the effectiveness of the proposed learning algorithms. Several techniques for more effective learning are discussed, including utilizing a random refractory period to avoid saturation of spikes, employing a quantization noise injection technique and pseudorandom initial conditions to decorrelate spike timings, in addition to leveraging the progressive precision in an SNN to reduce the inference latency and energy. Extensive parametric simulations are conducted to examine the aforementioned techniques. The learning algorithm is developed with the considerations of ease of hardware implementation and relative compatibility with the classic ANN-based learning. Therefore, the proposed algorithm not only enjoys the high energy efficiency and good scalability of an SNN in its specialized hardware but also benefits from the well-developed theory and techniques of conventional ANN-based learning. The Modified National Institute of Standards and Technology database benchmark test is conducted to verify the newly proposed learning algorithm. Classification correct rates of 97.2% and 97.8% are achieved for the one-hidden-layer and two-hidden-layer neural networks, respectively. Moreover, a brief discussion of the hardware implementations is presented for two mainstream architectures.
Collapse
|
22
|
Yousefzadeh A, Orchard G, Serrano-Gotarredona T, Linares-Barranco B. Active Perception With Dynamic Vision Sensors. Minimum Saccades With Optimum Recognition. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:927-939. [PMID: 29994268 DOI: 10.1109/tbcas.2018.2834428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vision processing with dynamic vision sensors (DVSs) is becoming increasingly popular. This type of a bio-inspired vision sensor does not record static images. The DVS pixel activity relies on the changes in light intensity. In this paper, we introduce a platform for the object recognition with a DVS in which the sensor is installed on a moving pan-tilt unit in a closed loop with a recognition neural network. This neural network is trained to recognize objects observed by a DVS, while the pan-tilt unit is moved to emulate micro-saccades. We show that performing more saccades in different directions can result in having more information about the object, and therefore, more accurate object recognition is possible. However, in high-performance and low-latency platforms, performing additional saccades adds latency and power consumption. Here, we show that the number of saccades can be reduced while keeping the same recognition accuracy by performing intelligent saccadic movements, in a closed action-perception smart loop. We propose an algorithm for smart saccadic movement decisions that can reduce the number of necessary saccades to half, on average, for a predefined accuracy on the N-MNIST dataset. Additionally, we show that by replacing this control algorithm with an artificial neural network that learns to control the saccades, we can also reduce to half the average number of saccades needed for the N-MNIST recognition.
Collapse
|
23
|
Neftci EO. Data and Power Efficient Intelligence with Neuromorphic Learning Machines. iScience 2018; 5:52-68. [PMID: 30240646 PMCID: PMC6123858 DOI: 10.1016/j.isci.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022] Open
Abstract
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.
Collapse
Affiliation(s)
- Emre O Neftci
- Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA; Department of Computer Science, UC Irvine, Irvine, CA 92697-5100, USA.
| |
Collapse
|
24
|
Linares-Barranco A, Liu H, Rios-Navarro A, Gomez-Rodriguez F, Moeys DP, Delbruck T. Approaching Retinal Ganglion Cell Modeling and FPGA Implementation for Robotics. ENTROPY 2018; 20:e20060475. [PMID: 33265565 PMCID: PMC7512993 DOI: 10.3390/e20060475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
Taking inspiration from biology to solve engineering problems using the organizing principles of biological neural computation is the aim of the field of neuromorphic engineering. This field has demonstrated success in sensor based applications (vision and audition) as well as in cognition and actuators. This paper is focused on mimicking the approaching detection functionality of the retina that is computed by one type of Retinal Ganglion Cell (RGC) and its application to robotics. These RGCs transmit action potentials when an expanding object is detected. In this work we compare the software and hardware logic FPGA implementations of this approaching function and the hardware latency when applied to robots, as an attention/reaction mechanism. The visual input for these cells comes from an asynchronous event-driven Dynamic Vision Sensor, which leads to an end-to-end event based processing system. The software model has been developed in Java, and computed with an average processing time per event of 370 ns on a NUC embedded computer. The output firing rate for an approaching object depends on the cell parameters that represent the needed number of input events to reach the firing threshold. For the hardware implementation, on a Spartan 6 FPGA, the processing time is reduced to 160 ns/event with the clock running at 50 MHz. The entropy has been calculated to demonstrate that the system is not totally deterministic in response to approaching objects because of several bioinspired characteristics. It has been measured that a Summit XL mobile robot can react to an approaching object in 90 ms, which can be used as an attentional mechanism. This is faster than similar event-based approaches in robotics and equivalent to human reaction latencies to visual stimulus.
Collapse
Affiliation(s)
| | - Hongjie Liu
- Institute of Neuroinformatics, ETHZ-UZH, CH8057 Zurich, Switzerland
| | - Antonio Rios-Navarro
- Robotic and Technology of Computers Lab, University of Seville, ES41012 Sevilla, Spain
| | | | | | - Tobi Delbruck
- Institute of Neuroinformatics, ETHZ-UZH, CH8057 Zurich, Switzerland
| |
Collapse
|
25
|
Shi C, Li J, Wang Y, Luo G. Exploiting Lightweight Statistical Learning for Event-Based Vision Processing. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2018; 6:19396-19406. [PMID: 29750138 PMCID: PMC5937990 DOI: 10.1109/access.2018.2823260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a lightweight statistical learning framework potentially suitable for low-cost event-based vision systems, where visual information is captured by a dynamic vision sensor (DVS) and represented as an asynchronous stream of pixel addresses (events) indicating a relative intensity change on those locations. A simple random ferns classifier based on randomly selected patch-based binary features is employed to categorize pixel event flows. Our experimental results demonstrate that compared to existing event-based processing algorithms, such as spiking convolutional neural networks (SCNNs) and the state-of-the-art bag-of-events (BoE)-based statistical algorithms, our framework excels in high processing speed (2× faster than the BoE statistical methods and >100× faster than previous SCNNs in training speed) with extremely simple online learning process, and achieves state-of-the-art classification accuracy on four popular address-event representation data sets: MNIST-DVS, Poker-DVS, Posture-DVS, and CIFAR10-DVS. Hardware estimation shows that our algorithm will be preferable for low-cost embedded system implementations.
Collapse
Affiliation(s)
- Cong Shi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114 USA
| | - Jiajun Li
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100864, China
| | - Ying Wang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100864, China
| | - Gang Luo
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
26
|
Camuñas-Mesa LA, Domínguez-Cordero YL, Linares-Barranco A, Serrano-Gotarredona T, Linares-Barranco B. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation. Front Neurosci 2018; 12:63. [PMID: 29515349 PMCID: PMC5826227 DOI: 10.3389/fnins.2018.00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
Convolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85 mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network.
Collapse
Affiliation(s)
- Luis A. Camuñas-Mesa
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC y Universidad de Sevilla, Sevilla, Spain
| | | | | | | | - Bernabé Linares-Barranco
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC y Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
27
|
Park J, Yu T, Joshi S, Maier C, Cauwenberghs G. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2408-2422. [PMID: 27483491 DOI: 10.1109/tnnls.2016.2572164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×107 synaptic events per second per 16k-neuron node in the hierarchy.
Collapse
Affiliation(s)
- Jongkil Park
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, Institute of Neural Computation, University of California at San Diego, La Jolla, CA, USA
| | | | - Siddharth Joshi
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, Institute of Neural Computation, University of California at San Diego, La Jolla, CA, USA
| | - Christoph Maier
- Institute of Neural Computation, University of California at San Diego, La Jolla, CA, USA
| | - Gert Cauwenberghs
- Department of Bioengineering, Jacobs School of Engineering, Institute of Neural Computation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Yousefzadeh A, Jablonski M, Iakymchuk T, Linares-Barranco A, Rosado A, Plana LA, Temple S, Serrano-Gotarredona T, Furber SB, Linares-Barranco B. On Multiple AER Handshaking Channels Over High-Speed Bit-Serial Bidirectional LVDS Links With Flow-Control and Clock-Correction on Commercial FPGAs for Scalable Neuromorphic Systems. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1133-1147. [PMID: 28809708 DOI: 10.1109/tbcas.2017.2717341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Address event representation (AER) is a widely employed asynchronous technique for interchanging "neural spikes" between different hardware elements in neuromorphic systems. Each neuron or cell in a chip or a system is assigned an address (or ID), which is typically communicated through a high-speed digital bus, thus time-multiplexing a high number of neural connections. Conventional AER links use parallel physical wires together with a pair of handshaking signals (request and acknowledge). In this paper, we present a fully serial implementation using bidirectional SATA connectors with a pair of low-voltage differential signaling (LVDS) wires for each direction. The proposed implementation can multiplex a number of conventional parallel AER links for each physical LVDS connection. It uses flow control, clock correction, and byte alignment techniques to transmit 32-bit address events reliably over multiplexed serial connections. The setup has been tested using commercial Spartan6 FPGAs attaining a maximum event transmission speed of 75 Meps (Mega events per second) for 32-bit events at a line rate of 3.0 Gbps. Full HDL codes (vhdl/verilog) and example demonstration codes for the SpiNNaker platform will be made available.
Collapse
Affiliation(s)
- Amirreza Yousefzadeh
- Instituto de Microelectrnica de Sevilla, IMSE-CNM (CSIC and University of Sevilla), Sevilla, Spain
| | - Miroslaw Jablonski
- Instituto de Microelectrnica de Sevilla, IMSE-CNM (CSIC and University of Sevilla), Sevilla, Spain
| | - Taras Iakymchuk
- School of Engineering, University of Valencia, Valéncia, Spain
| | | | - Alfredo Rosado
- School of Engineering, University of Valencia, Valéncia, Spain
| | - Luis A Plana
- School of Computer Science, University of Manchester, Manchester, U.K
| | - Steve Temple
- School of Computer Science, University of Manchester, Manchester, U.K
| | | | - Steve B Furber
- School of Computer Science, University of Manchester, Manchester, U.K
| | - Bernabe Linares-Barranco
- Instituto de Microelectrnica de Sevilla, IMSE-CNM (CSIC and University of Sevilla), Sevilla, Spain
| |
Collapse
|
29
|
Pedretti G, Milo V, Ambrogio S, Carboni R, Bianchi S, Calderoni A, Ramaswamy N, Spinelli AS, Ielmini D. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci Rep 2017; 7:5288. [PMID: 28706303 PMCID: PMC5509735 DOI: 10.1038/s41598-017-05480-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~104) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.
Collapse
Affiliation(s)
- G Pedretti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - V Milo
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - S Ambrogio
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - R Carboni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - S Bianchi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - A Calderoni
- Micron Technology, Inc., Boise, ID, 83707, USA
| | - N Ramaswamy
- Micron Technology, Inc., Boise, ID, 83707, USA
| | - A S Spinelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - D Ielmini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
30
|
Lagorce X, Orchard G, Galluppi F, Shi BE, Benosman RB. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2017; 39:1346-1359. [PMID: 27411216 DOI: 10.1109/tpami.2016.2574707] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Collapse
Affiliation(s)
- Xavier Lagorce
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche Médicale, Sorbonne Universités, Institut de la Vision, Université Paris 06, Paris, Paris, FranceFrance
| | - Garrick Orchard
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Francesco Galluppi
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche Médicale, Sorbonne Universités, Institut de la Vision, Université Paris 06, Paris, Paris, FranceFrance
| | | | - Ryad B Benosman
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche Médicale, Sorbonne Universités, Institut de la Vision, Université Paris 06, Paris, Paris, FranceFrance
| |
Collapse
|
31
|
Jimenez-Fernandez A, Cerezuela-Escudero E, Miro-Amarante L, Dominguez-Moralse MJ, de Asis Gomez-Rodriguez F, Linares-Barranco A, Jimenez-Moreno G. A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:804-818. [PMID: 27479979 DOI: 10.1109/tnnls.2016.2583223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11141, and a system clock frequency of 27 MHz.
Collapse
|
32
|
Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part I: the methodology and implementation. J Neural Eng 2017; 14:025001. [PMID: 28084217 PMCID: PMC5540665 DOI: 10.1088/1741-2552/aa593c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE One goal of neuromorphic engineering is to create 'realistic' robotic systems that interact with the physical world by adopting neuromechanical principles from biology. Critical to this is the methodology to implement the spinal circuitry responsible for the behavior of afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, and muscle fibers to enable useful behaviors. APPROACH We used programmable very- large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-scale system of populations of spiking neurons emulated the physiological properties of a pair of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-motoneurones) acting on a joint via long tendons. MAIN RESULTS This integrated system was able to maintain a joint angle, and reproduced stretch reflex responses even when driving the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us to explore numerous values and combinations of gamma-static and gamma-dynamic gains when driving a robotic finger, some of which replicated some human pathological conditions. Lastly, we explored the behavioral consequences of adopting three alternative models of isometric muscle force production. We found that the dynamic responses to rate-coded spike trains produce force ramps that can be very sensitive to tendon elasticity, especially at high force output. SIGNIFICANCE Our methodology produced, to our knowledge, the first example of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating realistic reflex behavior in cadaveric fingers. This research platform allows us to explore the mechanisms behind healthy and pathological sensorimotor function in the physical world by building them from first principles, and it is a precursor to neuromorphic robotic systems.
Collapse
Affiliation(s)
- Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Peng X, Zhao B, Yan R, Tang H, Yi Z. Bag of Events: An Efficient Probability-Based Feature Extraction Method for AER Image Sensors. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:791-803. [PMID: 28113870 DOI: 10.1109/tnnls.2016.2536741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Address event representation (AER) image sensors represent the visual information as a sequence of events that denotes the luminance changes of the scene. In this paper, we introduce a feature extraction method for AER image sensors based on the probability theory, namely, bag of events (BOE). The proposed approach represents each object as the joint probability distribution of the concurrent events, and each event corresponds to a unique activated pixel of the AER sensor. The advantages of BOE include: 1) it is a statistical learning method and has a good interpretability in mathematics; 2) BOE can significantly reduce the effort to tune parameters for different data sets, because it only has one hyperparameter and is robust to the value of the parameter; 3) BOE is an online learning algorithm, which does not require the training data to be collected in advance; 4) BOE can achieve competitive results in real time for feature extraction (>275 frames/s and >120,000 events/s); and 5) the implementation complexity of BOE only involves some basic operations, e.g., addition and multiplication. This guarantees the hardware friendliness of our method. The experimental results on three popular AER databases (i.e., MNIST-dynamic vision sensor, Poker Card, and Posture) show that our method is remarkably faster than two recently proposed AER categorization systems while preserving a good classification accuracy.
Collapse
|
34
|
Mishra A, Ghosh R, Principe JC, Thakor NV, Kukreja SL. A Saccade Based Framework for Real-Time Motion Segmentation Using Event Based Vision Sensors. Front Neurosci 2017; 11:83. [PMID: 28316563 PMCID: PMC5334512 DOI: 10.3389/fnins.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Motion segmentation is a critical pre-processing step for autonomous robotic systems to facilitate tracking of moving objects in cluttered environments. Event based sensors are low power analog devices that represent a scene by means of asynchronous information updates of only the dynamic details at high temporal resolution and, hence, require significantly less calculations. However, motion segmentation using spatiotemporal data is a challenging task due to data asynchrony. Prior approaches for object tracking using neuromorphic sensors perform well while the sensor is static or a known model of the object to be followed is available. To address these limitations, in this paper we develop a technique for generalized motion segmentation based on spatial statistics across time frames. First, we create micromotion on the platform to facilitate the separation of static and dynamic elements of a scene, inspired by human saccadic eye movements. Second, we introduce the concept of spike-groups as a methodology to partition spatio-temporal event groups, which facilitates computation of scene statistics and characterize objects in it. Experimental results show that our algorithm is able to classify dynamic objects with a moving camera with maximum accuracy of 92%.
Collapse
Affiliation(s)
- Abhishek Mishra
- Singapore Institute for Neurotechnology, National University of Singapore Singapore, Singapore
| | - Rohan Ghosh
- Singapore Institute for Neurotechnology, National University of Singapore Singapore, Singapore
| | - Jose C Principe
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, National University of SingaporeSingapore, Singapore; Biomedical Engineering Department, Johns Hopkins UniversityBaltimore, MD, USA
| | - Sunil L Kukreja
- Singapore Institute for Neurotechnology, National University of Singapore Singapore, Singapore
| |
Collapse
|
35
|
Osswald M, Ieng SH, Benosman R, Indiveri G. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Sci Rep 2017; 7:40703. [PMID: 28079187 PMCID: PMC5227683 DOI: 10.1038/srep40703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
Collapse
Affiliation(s)
- Marc Osswald
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sio-Hoi Ieng
- Université Pierre et Marie Curie, Institut de la Vision, Paris, France
| | - Ryad Benosman
- Université Pierre et Marie Curie, Institut de la Vision, Paris, France
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Wang H, Xu J, Gao Z, Lu C, Yao S, Ma J. An Event-Based Neurobiological Recognition System with Orientation Detector for Objects in Multiple Orientations. Front Neurosci 2016; 10:498. [PMID: 27867346 PMCID: PMC5095131 DOI: 10.3389/fnins.2016.00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
A new multiple orientation event-based neurobiological recognition system is proposed by integrating recognition and tracking function in this paper, which is used for asynchronous address-event representation (AER) image sensors. The characteristic of this system has been enriched to recognize the objects in multiple orientations with only training samples moving in a single orientation. The system extracts multi-scale and multi-orientation line features inspired by models of the primate visual cortex. An orientation detector based on modified Gaussian blob tracking algorithm is introduced for object tracking and orientation detection. The orientation detector and feature extraction block work in simultaneous mode, without any increase in categorization time. An addresses lookup table (addresses LUT) is also presented to adjust the feature maps by addresses mapping and reordering, and they are categorized in the trained spiking neural network. This recognition system is evaluated with the MNIST dataset which have played important roles in the development of computer vision, and the accuracy is increased owing to the use of both ON and OFF events. AER data acquired by a dynamic vision senses (DVS) are also tested on the system, such as moving digits, pokers, and vehicles. The experimental results show that the proposed system can realize event-based multi-orientation recognition. The work presented in this paper makes a number of contributions to the event-based vision processing system for multi-orientation object recognition. It develops a new tracking-recognition architecture to feedforward categorization system and an address reorder approach to classify multi-orientation objects using event-based data. It provides a new way to recognize multiple orientation objects with only samples in single orientation.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Jiangtao Xu
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Zhiyuan Gao
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Chengye Lu
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Suying Yao
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Jianguo Ma
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| |
Collapse
|
37
|
Chen PY, Gao L, Yu S. Design of Resistive Synaptic Array for Implementing On-Chip Sparse Learning. ACTA ACUST UNITED AC 2016. [DOI: 10.1109/tmscs.2016.2598742] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Hussain S, Basu A. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity. Front Neurosci 2016; 10:113. [PMID: 27065782 PMCID: PMC4814530 DOI: 10.3389/fnins.2016.00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/07/2016] [Indexed: 11/28/2022] Open
Abstract
The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best "k" out of "d" inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 - 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning.
Collapse
Affiliation(s)
| | - Arindam Basu
- School of Electrical and Electronic Engineering, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
39
|
Gosmann J, Eliasmith C. Optimizing Semantic Pointer Representations for Symbol-Like Processing in Spiking Neural Networks. PLoS One 2016; 11:e0149928. [PMID: 26900931 PMCID: PMC4762696 DOI: 10.1371/journal.pone.0149928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 11/17/2022] Open
Abstract
The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and architectural elements needed to account for cognitive functions. By means of the Neural Engineering Framework (NEF) this proposal can be realized in a spiking neural network. However, in any such network each SPA transformation will accumulate noise. By increasing the accuracy of common SPA operations, the overall network performance can be increased considerably. As well, the representations in such networks present a trade-off between being able to represent all possible values and being only able to represent the most likely values, but with high accuracy. We derive a heuristic to find the near-optimal point in this trade-off. This allows us to improve the accuracy of common SPA operations by up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient use of both traditional and neuromorphic hardware, which we demonstrate here.
Collapse
Affiliation(s)
- Jan Gosmann
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Eliasmith
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
40
|
Giulioni M, Lagorce X, Galluppi F, Benosman RB. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform. Front Neurosci 2016; 10:35. [PMID: 26909015 PMCID: PMC4754434 DOI: 10.3389/fnins.2016.00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.
Collapse
Affiliation(s)
| | - Xavier Lagorce
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche MédicaleParis, France; Sorbonne Universités, Institut de la Vision, Université de Paris 06 Pierre et Marie Curie, Centre National de la Recherche ScientifiqueParis, France
| | - Francesco Galluppi
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche MédicaleParis, France; Sorbonne Universités, Institut de la Vision, Université de Paris 06 Pierre et Marie Curie, Centre National de la Recherche ScientifiqueParis, France
| | - Ryad B Benosman
- Vision and Natural Computation Group, Institut National de la Santé et de la Recherche MédicaleParis, France; Sorbonne Universités, Institut de la Vision, Université de Paris 06 Pierre et Marie Curie, Centre National de la Recherche ScientifiqueParis, France
| |
Collapse
|
41
|
Digital implementations of thalamocortical neuron models and its application in thalamocortical control using FPGA for Parkinson׳s disease. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
|
43
|
Serrano-Gotarredona T, Linares-Barranco B. Poker-DVS and MNIST-DVS. Their History, How They Were Made, and Other Details. Front Neurosci 2015; 9:481. [PMID: 26733794 PMCID: PMC4686704 DOI: 10.3389/fnins.2015.00481] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
This article reports on two databases for event-driven object recognition using a Dynamic Vision Sensor (DVS). The first, which we call Poker-DVS and is being released together with this article, was obtained by browsing specially made poker card decks in front of a DVS camera for 2–4 s. Each card appeared on the screen for about 20–30 ms. The poker pips were tracked and isolated off-line to constitute the 131-recording Poker-DVS database. The second database, which we call MNIST-DVS and which was released in December 2013, consists of a set of 30,000 DVS camera recordings obtained by displaying 10,000 moving symbols from the standard MNIST 70,000-picture database on an LCD monitor for about 2–3 s each. Each of the 10,000 symbols was displayed at three different scales, so that event-driven object recognition algorithms could easily be tested for different object sizes. This article tells the story behind both databases, covering, among other aspects, details of how they work and the reasons for their creation. We provide not only the databases with corresponding scripts, but also the scripts and data used to generate the figures shown in this article (as Supplementary Material).
Collapse
Affiliation(s)
| | - Bernabé Linares-Barranco
- Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla Sevilla, Spain
| |
Collapse
|
44
|
Gao L, Wang IT, Chen PY, Vrudhula S, Seo JS, Cao Y, Hou TH, Yu S. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. NANOTECHNOLOGY 2015; 26:455204. [PMID: 26491032 DOI: 10.1088/0957-4484/26/45/455204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaOx/TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.
Collapse
|
45
|
Giulioni M, Corradi F, Dante V, del Giudice P. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems. Sci Rep 2015; 5:14730. [PMID: 26463272 PMCID: PMC4604465 DOI: 10.1038/srep14730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Collapse
Affiliation(s)
| | - Federico Corradi
- Department of Technologies and Health, Istituto Superiore di Sanitá, Roma, Italy
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland
| | - Vittorio Dante
- Department of Technologies and Health, Istituto Superiore di Sanitá, Roma, Italy
| | - Paolo del Giudice
- Department of Technologies and Health, Istituto Superiore di Sanitá, Roma, Italy
- National Institute for Nuclear Physics, Rome, Italy
| |
Collapse
|
46
|
Orchard G, Meyer C, Etienne-Cummings R, Posch C, Thakor N, Benosman R. HFirst: A Temporal Approach to Object Recognition. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2015; 37:2028-2040. [PMID: 26353184 DOI: 10.1109/tpami.2015.2392947] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper introduces a spiking hierarchical model for object recognition which utilizes the precise timing information inherently present in the output of biologically inspired asynchronous address event representation (AER) vision sensors. The asynchronous nature of these systems frees computation and communication from the rigid predetermined timing enforced by system clocks in conventional systems. Freedom from rigid timing constraints opens the possibility of using true timing to our advantage in computation. We show not only how timing can be used in object recognition, but also how it can in fact simplify computation. Specifically, we rely on a simple temporal-winner-take-all rather than more computationally intensive synchronous operations typically used in biologically inspired neural networks for object recognition. This approach to visual computation represents a major paradigm shift from conventional clocked systems and can find application in other sensory modalities and computational tasks. We showcase effectiveness of the approach by achieving the highest reported accuracy to date (97.5% ± 3.5%) for a previously published four class card pip recognition task and an accuracy of 84.9% ± 1.9% for a new more difficult 36 class character recognition task.
Collapse
|
47
|
Zhao B, Ding R, Chen S, Linares-Barranco B, Tang H. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:1963-1978. [PMID: 25347889 DOI: 10.1109/tnnls.2014.2362542] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper introduces an event-driven feedforward categorization system, which takes data from a temporal contrast address event representation (AER) sensor. The proposed system extracts bio-inspired cortex-like features and discriminates different patterns using an AER based tempotron classifier (a network of leaky integrate-and-fire spiking neurons). One of the system's most appealing characteristics is its event-driven processing, with both input and features taking the form of address events (spikes). The system was evaluated on an AER posture dataset and compared with two recently developed bio-inspired models. Experimental results have shown that it consumes much less simulation time while still maintaining comparable performance. In addition, experiments on the Mixed National Institute of Standards and Technology (MNIST) image dataset have demonstrated that the proposed system can work not only on raw AER data but also on images (with a preprocessing step to convert images into AER events) and that it can maintain competitive accuracy even when noise is added. The system was further evaluated on the MNIST dynamic vision sensor dataset (in which data is recorded using an AER dynamic vision sensor), with testing accuracy of 88.14%.
Collapse
|
48
|
Okuno H, Hasegawa J, Sanada T, Yagi T. Real-time emulator for reproducing graded potentials in vertebrate retina. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:284-295. [PMID: 25134087 DOI: 10.1109/tbcas.2014.2327103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In most parts of the retina, neuronal circuits process visual signals represented by slowly changing membrane potentials, or so-called graded potentials. A feasible approach to speculate about the functional roles of retinal neuronal circuits is to reproduce the graded potentials of retinal neurons in response to natural scenes. In this study, we developed a simulation platform for reproducing graded potentials with the following features: real-time reproduction of retinal neural activities in response to natural scenes, a configurable model structure, and compact hardware. The spatio-temporal properties of neurons were emulated efficiently by a mixed analog-digital architecture that consisted of analog resistive networks and a field-programmable gate array. The neural activities on sustained and transient pathways were emulated from 128 × 128 inputs at 200 frames per second.
Collapse
|
49
|
Hussain S, Liu SC, Basu A. Hardware-amenable structural learning for spike-based pattern classification using a simple model of active dendrites. Neural Comput 2015; 27:845-97. [PMID: 25734494 DOI: 10.1162/neco_a_00713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter presents a spike-based model that employs neurons with functionally distinct dendritic compartments for classifying high-dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron the capacity to perform a large number of input-output mappings. The model uses sparse synaptic connectivity, where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin-enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems, and its performance is compared against that achieved using support vector machine and extreme learning machine techniques. Our proposed method attains comparable performance while using 10% to 50% less in computational resource than the other reported techniques.
Collapse
Affiliation(s)
- Shaista Hussain
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | | | | |
Collapse
|
50
|
Ni Z, Ieng SH, Posch C, Régnier S, Benosman R. Visual tracking using neuromorphic asynchronous event-based cameras. Neural Comput 2015; 27:925-53. [PMID: 25710087 DOI: 10.1162/neco_a_00720] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter presents a novel computationally efficient and robust pattern tracking method based on a time-encoded, frame-free visual data. Recent interdisciplinary developments, combining inputs from engineering and biology, have yielded a novel type of camera that encodes visual information into a continuous stream of asynchronous, temporal events. These events encode temporal contrast and intensity locally in space and time. We show that the sparse yet accurately timed information is well suited as a computational input for object tracking. In this letter, visual data processing is performed for each incoming event at the time it arrives. The method provides a continuous and iterative estimation of the geometric transformation between the model and the events representing the tracked object. It can handle isometry, similarities, and affine distortions and allows for unprecedented real-time performance at equivalent frame rates in the kilohertz range on a standard PC. Furthermore, by using the dimension of time that is currently underexploited by most artificial vision systems, the method we present is able to solve ambiguous cases of object occlusions that classical frame-based techniques handle poorly.
Collapse
Affiliation(s)
- Zhenjiang Ni
- Institute of Robotics and Intelligent Systems, University Pierre and Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|