1
|
Wang J. Training multi-layer spiking neural networks with plastic synaptic weights and delays. Front Neurosci 2024; 17:1253830. [PMID: 38328553 PMCID: PMC10847234 DOI: 10.3389/fnins.2023.1253830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024] Open
Abstract
Spiking neural networks are usually considered as the third generation of neural networks, which hold the potential of ultra-low power consumption on corresponding hardware platforms and are very suitable for temporal information processing. However, how to efficiently train the spiking neural networks remains an open question, and most existing learning methods only consider the plasticity of synaptic weights. In this paper, we proposed a new supervised learning algorithm for multiple-layer spiking neural networks based on the typical SpikeProp method. In the proposed method, both the synaptic weights and delays are considered as adjustable parameters to improve both the biological plausibility and the learning performance. In addition, the proposed method inherits the advantages of SpikeProp, which can make full use of the temporal information of spikes. Various experiments are conducted to verify the performance of the proposed method, and the results demonstrate that the proposed method achieves a competitive learning performance compared with the existing related works. Finally, the differences between the proposed method and the existing mainstream multi-layer training algorithms are discussed.
Collapse
Affiliation(s)
- Jing Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Luo X, Qu H, Wang Y, Yi Z, Zhang J, Zhang M. Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10141-10153. [PMID: 35436200 DOI: 10.1109/tnnls.2022.3164930] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The brain-inspired spiking neural networks (SNNs) hold the advantages of lower power consumption and powerful computing capability. However, the lack of effective learning algorithms has obstructed the theoretical advance and applications of SNNs. The majority of the existing learning algorithms for SNNs are based on the synaptic weight adjustment. However, neuroscience findings confirm that synaptic delays can also be modulated to play an important role in the learning process. Here, we propose a gradient descent-based learning algorithm for synaptic delays to enhance the sequential learning performance of single spiking neuron. Moreover, we extend the proposed method to multilayer SNNs with spike temporal-based error backpropagation. In the proposed multilayer learning algorithm, information is encoded in the relative timing of individual neuronal spikes, and learning is performed based on the exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. Experimental results on both synthetic and realistic datasets show significant improvements in learning efficiency and accuracy over the existing spike temporal-based learning algorithms. We also evaluate the proposed learning method in an SNN-based multimodal computational model for audiovisual pattern recognition, and it achieves better performance compared with its counterparts.
Collapse
|
3
|
Weerasinghe MMA, Wang G, Whalley J, Crook-Rumsey M. Mental stress recognition on the fly using neuroplasticity spiking neural networks. Sci Rep 2023; 13:14962. [PMID: 37696860 PMCID: PMC10495416 DOI: 10.1038/s41598-023-34517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 05/03/2023] [Indexed: 09/13/2023] Open
Abstract
Mental stress is found to be strongly connected with human cognition and wellbeing. As the complexities of human life increase, the effects of mental stress have impacted human health and cognitive performance across the globe. This highlights the need for effective non-invasive stress detection methods. In this work, we introduce a novel, artificial spiking neural network model called Online Neuroplasticity Spiking Neural Network (O-NSNN) that utilizes a repertoire of learning concepts inspired by the brain to classify mental stress using Electroencephalogram (EEG) data. These models are personalized and tested on EEG data recorded during sessions in which participants listen to different types of audio comments designed to induce acute stress. Our O-NSNN models learn on the fly producing an average accuracy of 90.76% (σ = 2.09) when classifying EEG signals of brain states associated with these audio comments. The brain-inspired nature of the individual models makes them robust and efficient and has the potential to be integrated into wearable technology. Furthermore, this article presents an exploratory analysis of trained O-NSNNs to discover links between perceived and acute mental stress. The O-NSNN algorithm proved to be better for personalized stress recognition in terms of accuracy, efficiency, and model interpretability.
Collapse
Affiliation(s)
- Mahima Milinda Alwis Weerasinghe
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
- Brain-Inspired AI and Neuroinformatics Lab, Department of Data Science, Sri Lanka Technological Campus, Padukka, Sri Lanka.
| | - Grace Wang
- School of Psychology and Wellbeing, University of Southern Queensland, Toowoomba, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, Australia
| | - Jacqueline Whalley
- Department of Computer Science and Software Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Mark Crook-Rumsey
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
- UK Dementia Research Institute, Centre for Care Research and Technology, Imperial College London, London, UK
| |
Collapse
|
4
|
Hu L, Liao X. Voltage slope guided learning in spiking neural networks. Front Neurosci 2022; 16:1012964. [PMID: 36440266 PMCID: PMC9685168 DOI: 10.3389/fnins.2022.1012964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 04/19/2024] Open
Abstract
A thorny problem in machine learning is how to extract useful clues related to delayed feedback signals from the clutter of input activity, known as the temporal credit-assignment problem. The aggregate-label learning algorithms make an explicit representation of this problem by training spiking neurons to assign the aggregate feedback signal to potentially effective clues. However, earlier aggregate-label learning algorithms suffered from inefficiencies due to the large amount of computation, while recent algorithms that have solved this problem may fail to learn due to the inability to find adjustment points. Therefore, we propose a membrane voltage slope guided algorithm (VSG) to further cope with this limitation. Direct dependence on the membrane voltage when finding the key point of weight adjustment makes VSG avoid intensive calculation, but more importantly, the membrane voltage that always exists makes it impossible to lose the adjustment point. Experimental results show that the proposed algorithm can correlate delayed feedback signals with the effective clues embedded in background spiking activity, and also achieves excellent performance on real medical classification datasets and speech classification datasets. The superior performance makes it a meaningful reference for aggregate-label learning on spiking neural networks.
Collapse
Affiliation(s)
- Lvhui Hu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liao
- Information Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Comsa IM, Potempa K, Versari L, Fischbacher T, Gesmundo A, Alakuijala J. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5939-5952. [PMID: 33900924 DOI: 10.1109/tnnls.2021.3071976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The timing of individual neuronal spikes is essential for biological brains to make fast responses to sensory stimuli. However, conventional artificial neural networks lack the intrinsic temporal coding ability present in biological networks. We propose a spiking neural network model that encodes information in the relative timing of individual spikes. In classification tasks, the output of the network is indicated by the first neuron to spike in the output layer. This temporal coding scheme allows the supervised training of the network with backpropagation, using locally exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. The network operates using a biologically plausible synaptic transfer function. In addition, we use trainable pulses that provide bias, add flexibility during training, and exploit the decayed part of the synaptic function. We show that such networks can be successfully trained on multiple data sets encoded in time, including MNIST. Our model outperforms comparable spiking models on MNIST and achieves similar quality to fully connected conventional networks with the same architecture. The spiking network spontaneously discovers two operating modes, mirroring the accuracy-speed tradeoff observed in human decision-making: a highly accurate but slow regime, and a fast but slightly lower accuracy regime. These results demonstrate the computational power of spiking networks with biological characteristics that encode information in the timing of individual neurons. By studying temporal coding in spiking networks, we aim to create building blocks toward energy-efficient, state-based biologically inspired neural architectures. We provide open-source code for the model.
Collapse
|
6
|
Unsupervised anomaly detection in multivariate time series with online evolving spiking neural networks. Mach Learn 2022. [DOI: 10.1007/s10994-022-06129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractWith the increasing demand for digital products, processes and services the research area of automatic detection of signal outliers in streaming data has gained a lot of attention. The range of possible applications for this kind of algorithms is versatile and ranges from the monitoring of digital machinery and predictive maintenance up to applications in analyzing big data healthcare sensor data. In this paper we present a method for detecting anomalies in streaming multivariate times series by using an adapted evolving Spiking Neural Network. As the main components of this work we contribute (1) an alternative rank-order-based learning algorithm which uses the precise times of the incoming spikes for adjusting the synaptic weights, (2) an adapted, realtime-capable and efficient encoding technique for multivariate data based on multi-dimensional Gaussian Receptive Fields and (3) a continuous outlier scoring function for an improved interpretability of the classifications. Spiking neural networks are extremely efficient when it comes to process time dependent information. We demonstrate the effectiveness of our model on a synthetic dataset based on the Numenta Anomaly Benchmark with various anomaly types. We compare our algorithm to other streaming anomaly detecting algorithms and can prove that our algorithm performs better in detecting anomalies while demanding less computational resources for processing high dimensional data.
Collapse
|
7
|
Comşa IM, Versari L, Fischbacher T, Alakuijala J. Spiking Autoencoders With Temporal Coding. Front Neurosci 2021; 15:712667. [PMID: 34483829 PMCID: PMC8414972 DOI: 10.3389/fnins.2021.712667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/06/2021] [Indexed: 01/31/2023] Open
Abstract
Spiking neural networks with temporal coding schemes process information based on the relative timing of neuronal spikes. In supervised learning tasks, temporal coding allows learning through backpropagation with exact derivatives, and achieves accuracies on par with conventional artificial neural networks. Here we introduce spiking autoencoders with temporal coding and pulses, trained using backpropagation to store and reconstruct images with high fidelity from compact representations. We show that spiking autoencoders with a single layer are able to effectively represent and reconstruct images from the neuromorphically-encoded MNIST and FMNIST datasets. We explore the effect of different spike time target latencies, data noise levels and embedding sizes, as well as the classification performance from the embeddings. The spiking autoencoders achieve results similar to or better than conventional non-spiking autoencoders. We find that inhibition is essential in the functioning of the spiking autoencoders, particularly when the input needs to be memorised for a longer time before the expected output spike times. To reconstruct images with a high target latency, the network learns to accumulate negative evidence and to use the pulses as excitatory triggers for producing the output spikes at the required times. Our results highlight the potential of spiking autoencoders as building blocks for more complex biologically-inspired architectures. We also provide open-source code for the model.
Collapse
|
8
|
Cheng L, Liu Y, Hou ZG, Tan M, Du D, Fei M. A Rapid Spiking Neural Network Approach With an Application on Hand Gesture Recognition. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2019.2918228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Lobo JL, Oregi I, Bifet A, Del Ser J. Exploiting the stimuli encoding scheme of evolving Spiking Neural Networks for stream learning. Neural Netw 2020; 123:118-133. [DOI: 10.1016/j.neunet.2019.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
10
|
Wang X, Lin X, Dang X. Supervised learning in spiking neural networks: A review of algorithms and evaluations. Neural Netw 2020; 125:258-280. [PMID: 32146356 DOI: 10.1016/j.neunet.2020.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 12/15/2019] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
As a new brain-inspired computational model of the artificial neural network, a spiking neural network encodes and processes neural information through precisely timed spike trains. Spiking neural networks are composed of biologically plausible spiking neurons, which have become suitable tools for processing complex temporal or spatiotemporal information. However, because of their intricately discontinuous and implicit nonlinear mechanisms, the formulation of efficient supervised learning algorithms for spiking neural networks is difficult, and has become an important problem in this research field. This article presents a comprehensive review of supervised learning algorithms for spiking neural networks and evaluates them qualitatively and quantitatively. First, a comparison between spiking neural networks and traditional artificial neural networks is provided. The general framework and some related theories of supervised learning for spiking neural networks are then introduced. Furthermore, the state-of-the-art supervised learning algorithms in recent years are reviewed from the perspectives of applicability to spiking neural network architecture and the inherent mechanisms of supervised learning algorithms. A performance comparison of spike train learning of some representative algorithms is also made. In addition, we provide five qualitative performance evaluation criteria for supervised learning algorithms for spiking neural networks and further present a new taxonomy for supervised learning algorithms depending on these five performance evaluation criteria. Finally, some future research directions in this research field are outlined.
Collapse
Affiliation(s)
- Xiangwen Wang
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Xianghong Lin
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Xiaochao Dang
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
11
|
Allred JM, Roy K. Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks. Front Neurosci 2020; 14:7. [PMID: 32063827 PMCID: PMC6999159 DOI: 10.3389/fnins.2020.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Stochastic gradient descent requires that training samples be drawn from a uniformly random distribution of the data. For a deployed system that must learn online from an uncontrolled and unknown environment, the ordering of input samples often fails to meet this criterion, making lifelong learning a difficult challenge. We exploit the locality of the unsupervised Spike Timing Dependent Plasticity (STDP) learning rule to target local representations in a Spiking Neural Network (SNN) to adapt to novel information while protecting essential information in the remainder of the SNN from catastrophic forgetting. In our Controlled Forgetting Networks (CFNs), novel information triggers stimulated firing and heterogeneously modulated plasticity, inspired by biological dopamine signals, to cause rapid and isolated adaptation in the synapses of neurons associated with outlier information. This targeting controls the forgetting process in a way that reduces the degradation of accuracy for older tasks while learning new tasks. Our experimental results on the MNIST dataset validate the capability of CFNs to learn successfully over time from an unknown, changing environment, achieving 95.24% accuracy, which we believe is the best unsupervised accuracy ever achieved by a fixed-size, single-layer SNN on a completely disjoint MNIST dataset.
Collapse
Affiliation(s)
- Jason M Allred
- Nanoelectronics Research Laboratory, Electrical and Computer Engineering Department, Purdue University, West Lafayette, IN, United States
| | - Kaushik Roy
- Nanoelectronics Research Laboratory, Electrical and Computer Engineering Department, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
12
|
Lobo JL, Del Ser J, Bifet A, Kasabov N. Spiking Neural Networks and online learning: An overview and perspectives. Neural Netw 2019; 121:88-100. [PMID: 31536902 DOI: 10.1016/j.neunet.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/18/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022]
Abstract
Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.
Collapse
Affiliation(s)
| | - Javier Del Ser
- TECNALIA, 48160 Derio, Spain; Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain; University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
| | - Albert Bifet
- Télécom ParisTech, París, C201-2, France; University of Waikato, Hamilton, New Zealand
| | - Nikola Kasabov
- Auckland University of Technology (AUT), Auckland, New Zealand
| |
Collapse
|
13
|
Xu M, Yang Y, Han M, Qiu T, Lin H. Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1621-1634. [PMID: 30307877 DOI: 10.1109/tnnls.2018.2869131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Spatio-temporal series prediction has attracted increasing attention in the field of meteorology in recent years. The spatial and temporal joint effect makes predictions challenging. Most of the existing spatio-temporal prediction models are computationally complicated. To develop an accurate but easy-to-implement spatio-temporal prediction model, this paper designs a novel spatio-temporal prediction model based on echo state networks. For real-world observed meteorological data with randomness and large changes, we use a cubic spline method to bridge the gaps between the neighboring points, which results in a pleasingly smooth series. The interpolated series is later input into the spatio-temporal echo state networks, in which the spatial coefficients are computed by the elastic-net algorithm. This approach offers automatic selection and continuous shrinkage of the spatial variables. The proposed model provides an intuitive but effective approach to address the interaction of spatial and temporal effects. To demonstrate the practicality of the proposed model, we apply it to predict two real-world datasets: monthly precipitation series and daily air quality index series. Experimental results demonstrate that the proposed model achieves a normalized root-mean-square error of approximately 0.250 on both datasets. Similar results are achieved on the long short-term memory model, but the computation time of our proposed model is considerably shorter. It can be inferred that our proposed neural network model has advantages on predicting meteorological series over other models.
Collapse
|
14
|
Jeyasothy A, Sundaram S, Sundararajan N. SEFRON: A New Spiking Neuron Model With Time-Varying Synaptic Efficacy Function for Pattern Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1231-1240. [PMID: 30273156 DOI: 10.1109/tnnls.2018.2868874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a new time-varying long-term Synaptic Efficacy Function-based leaky-integrate-and-fire neuRON model, referred to as SEFRON and its supervised learning rule for pattern classification problems. The time-varying synaptic efficacy function is represented by a sum of amplitude modulated Gaussian distribution functions located at different times. For a given pattern, the SEFRON's learning rule determines the changes in the amplitudes of weights at selected presynaptic spike times by minimizing a new error function reflecting the differences between the desired and actual postsynaptic firing times. Similar to the gamma-aminobutyric acid-switch phenomenon observed in a biological neuron that switches between excitatory and inhibitory postsynaptic potentials based on the physiological needs, the time-varying synapse model proposed in this paper allows the synaptic efficacy (weight) to switch signs in a continuous manner. The computational power and the functioning of SEFRON are first illustrated using a binary pattern classification problem. The detailed performance comparisons of a single SEFRON classifier with other spiking neural networks (SNNs) are also presented using four benchmark data sets from the UCI machine learning repository. The results clearly indicate that a single SEFRON provides a similar generalization performance compared to other SNNs with multiple layers and multiple neurons.
Collapse
|
15
|
Dora S, Sundaram S, Sundararajan N. An Interclass Margin Maximization Learning Algorithm for Evolving Spiking Neural Network. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:989-999. [PMID: 29994611 DOI: 10.1109/tcyb.2018.2791282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a new learning algorithm developed for a three layered spiking neural network for pattern classification problems. The learning algorithm maximizes the interclass margin and is referred to as the two stage margin maximization spiking neural network (TMM-SNN). In the structure learning stage, the learning algorithm completely evolves the hidden layer neurons in the first epoch. Further, TMM-SNN updates the weights of the hidden neurons for multiple epochs using the newly developed normalized membrane potential learning rule such that the interclass margins (based on the response of hidden neurons) are maximized. The normalized membrane potential learning rule considers both the local information in the spike train generated by a presynaptic neuron and the existing knowledge (synaptic weights) stored in the network to update the synaptic weights. After the first stage, the number of hidden neurons and their parameters are not updated. In the output weights learning stage, TMM-SNN updates the weights of the output layer neurons for multiple epochs to maximize the interclass margins (based on the response of output neurons). Performance of TMM-SNN is evaluated using ten benchmark data sets from the UCI machine learning repository. Statistical performance comparison of TMM-SNN with other existing learning algorithms for SNNs is conducted using the nonparametric Friedman test followed by a pairwise comparison using the Fisher's least significant difference method. The results clearly indicate that TMM-SNN achieves better generalization performance in comparison to other algorithms.
Collapse
|
16
|
Liu YJ, Zeng M, Meng QH. Electronic nose using a bio-inspired neural network modeled on mammalian olfactory system for Chinese liquor classification. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:025001. [PMID: 30831708 DOI: 10.1063/1.5064540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The simplification of data processing is the frontier domain for electronic nose (e-nose) applications, whereas there are a lot of manual operations in a traditional processing procedure. To solve this problem, we propose a novel data processing method using the bio-inspired neural network modeled on the mammalian olfactory system. Through a neural coding scheme with multiple squared cosine receptive fields, continuous sensor data are simplified as the spike pattern in virtual receptor units. The biologically plausible olfactory bulb, which mimics the structure and function of main olfactory pathways, is designed to refine the olfactory information embedded in the encoded spikes. As a simplified presentation of cortical function, the bionic olfactory cortex is established to further analyze olfactory bulb's outputs and perform classification. The proposed method can automatically learn features without tedious steps such as denoising, feature extraction and reduction, which significantly simplifies the processing procedure for e-noses. To validate algorithm performance, comparison studies were performed for seven kinds of Chinese liquors using the proposed method and traditional data processing methods. The experimental results show that squared cosine receptive fields and the olfactory bulb model are crucial for improving classification performance, and the proposed method has higher classification rates than traditional methods when the sensor quantity and type are changed.
Collapse
Affiliation(s)
- Ying-Jie Liu
- Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Ming Zeng
- Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Qing-Hao Meng
- Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Behrenbeck J, Tayeb Z, Bhiri C, Richter C, Rhodes O, Kasabov N, Espinosa-Ramos JI, Furber S, Cheng G, Conradt J. Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware. J Neural Eng 2018; 16:026014. [PMID: 30577030 DOI: 10.1088/1741-2552/aafabc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The objective of this work is to use the capability of spiking neural networks to capture the spatio-temporal information encoded in time-series signals and decode them without the use of hand-crafted features and vector-based learning and the realization of the spiking model on low-power neuromorphic hardware. APPROACH The NeuCube spiking model was used to classify different grasp movements directly from raw surface electromyography signals (sEMG), the estimations of the applied finger forces as well as the classification of two motor imagery movements from raw electroencephalography (EEG). In a parallel investigation, the designed spiking decoder was implemented on SpiNNaker neuromorphic hardware, which allows low-energy real-time processing. MAIN RESULTS Experimental results reveal a better classification accuracy using the NeuCube model compared to traditional machine learning methods. For sEMG classification, we reached a training accuracy of 85% and a test accuracy of 84.8%, as well as less than 19% of relative root mean square error (rRMSE) when estimating finger forces from six subjects. For the EEG classification, a mean accuracy of 75% was obtained when tested on raw EEG data from nine subjects from the existing 2b dataset from 'BCI competition IV'. SIGNIFICANCE This work provides a proof of concept for a successful implementation of the NeuCube spiking model on the SpiNNaker neuromorphic platform for raw sEMG and EEG decoding, which could chart a route ahead for a new generation of portable closed-loop and low-power neuroprostheses.
Collapse
Affiliation(s)
- Jan Behrenbeck
- Department of Mechanical Engineering, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Evolving Spiking Neural Networks for online learning over drifting data streams. Neural Netw 2018; 108:1-19. [DOI: 10.1016/j.neunet.2018.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022]
|
19
|
Kulkarni SR, Rajendran B. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization. Neural Netw 2018; 103:118-127. [PMID: 29674234 DOI: 10.1016/j.neunet.2018.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications.
Collapse
Affiliation(s)
- Shruti R Kulkarni
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ, 07102, USA
| | - Bipin Rajendran
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ, 07102, USA.
| |
Collapse
|
20
|
SpikeCD: a parameter-insensitive spiking neural network with clustering degeneracy strategy. Neural Comput Appl 2018. [DOI: 10.1007/s00521-017-3336-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|