Zhang H, Zhao X, Wang H, Zong G, Xu N. Hierarchical Sliding-Mode Surface-Based Adaptive Actor-Critic Optimal Control for Switched Nonlinear Systems With Unknown Perturbation.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;
35:1559-1571. [PMID:
35834452 DOI:
10.1109/tnnls.2022.3183991]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article studies the hierarchical sliding-mode surface (HSMS)-based adaptive optimal control problem for a class of switched continuous-time (CT) nonlinear systems with unknown perturbation under an actor-critic (AC) neural networks (NNs) architecture. First, a novel perturbation observer with a nested parameter adaptive law is designed to estimate the unknown perturbation. Then, by constructing an especial cost function related to HSMS, the original control issue is further converted into the problem of finding a series of optimal control policies. The solution to the HJB equation is identified by the HSMS-based AC NNs, where the actor and critic updating laws are developed to implement the reinforcement learning (RL) strategy simultaneously. The critic update law is designed via the gradient descent approach and the principle of standardization, such that the persistence of excitation (PE) condition is no longer needed. Based on the Lyapunov stability theory, all the signals of the closed-loop switched nonlinear systems are strictly proved to be bounded in the sense of uniformly ultimate boundedness (UUB). Finally, the simulation results are presented to verify the validity of the proposed adaptive optimal control scheme.
Collapse