1
|
Sikora A, Jeong H, Yu M, Chen X, Murray B, Kamaleswaran R. Cluster analysis driven by unsupervised latent feature learning of medications to identify novel pharmacophenotypes of critically ill patients. Sci Rep 2023; 13:15562. [PMID: 37730817 PMCID: PMC10511715 DOI: 10.1038/s41598-023-42657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Unsupervised clustering of intensive care unit (ICU) medications may identify unique medication clusters (i.e., pharmacophenotypes) in critically ill adults. We performed an unsupervised analysis with Restricted Boltzmann Machine of 991 medications profiles of patients managed in the ICU to explore pharmacophenotypes that correlated with ICU complications (e.g., mechanical ventilation) and patient-centered outcomes (e.g., length of stay, mortality). Six unique pharmacophenotypes were observed, with unique medication profiles and clinically relevant differences in ICU complications and patient-centered outcomes. While pharmacophenotypes 2 and 4 had no statistically significant difference in ICU length of stay, duration of mechanical ventilation, or duration of vasopressor use, their mortality differed significantly (9.0% vs. 21.9%, p < 0.0001). Pharmacophenotype 4 had a mortality rate of 21.9%, compared with the rest of the pharmacophenotypes ranging from 2.5 to 9%. Phenotyping approaches have shown promise in classifying the heterogenous syndromes of critical illness to predict treatment response and guide clinical decision support systems but have never included comprehensive medication information. This first-ever machine learning approach revealed differences among empirically-derived subgroups of ICU patients that are not typically revealed by traditional classifiers. Identification of pharmacophenotypes may enable enhanced decision making to optimize treatment decisions.
Collapse
Affiliation(s)
- Andrea Sikora
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA, USA.
| | | | - Mengyun Yu
- Department of Statistics, University of Georgia Franklin College of Arts and Sciences, Athens, USA
| | - Xianyan Chen
- Department of Statistics, University of Georgia Franklin College of Arts and Sciences, Athens, USA
| | - Brian Murray
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Sikora A, Rafiei A, Rad MG, Keats K, Smith SE, Devlin JW, Murphy DJ, Murray B, Kamaleswaran R. Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model. Crit Care 2023; 27:167. [PMID: 37131200 PMCID: PMC10155304 DOI: 10.1186/s13054-023-04437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Identifying patterns within ICU medication regimens may help artificial intelligence algorithms to better predict patient outcomes; however, machine learning methods incorporating medications require further development, including standardized terminology. The Common Data Model for Intensive Care Unit (ICU) Medications (CDM-ICURx) may provide important infrastructure to clinicians and researchers to support artificial intelligence analysis of medication-related outcomes and healthcare costs. Using an unsupervised cluster analysis approach in combination with this common data model, the objective of this evaluation was to identify novel patterns of medication clusters (termed 'pharmacophenotypes') correlated with ICU adverse events (e.g., fluid overload) and patient-centered outcomes (e.g., mortality). METHODS This was a retrospective, observational cohort study of 991 critically ill adults. To identify pharmacophenotypes, unsupervised machine learning analysis with automated feature learning using restricted Boltzmann machine and hierarchical clustering was performed on the medication administration records of each patient during the first 24 h of their ICU stay. Hierarchical agglomerative clustering was applied to identify unique patient clusters. Distributions of medications across pharmacophenotypes were described, and differences among patient clusters were compared using signed rank tests and Fisher's exact tests, as appropriate. RESULTS A total of 30,550 medication orders for the 991 patients were analyzed; five unique patient clusters and six unique pharmacophenotypes were identified. For patient outcomes, compared to patients in Clusters 1 and 3, patients in Cluster 5 had a significantly shorter duration of mechanical ventilation and ICU length of stay (p < 0.05); for medications, Cluster 5 had a higher distribution of Pharmacophenotype 1 and a smaller distribution of Pharmacophenotype 2, compared to Clusters 1 and 3. For outcomes, patients in Cluster 2, despite having the highest severity of illness and greatest medication regimen complexity, had the lowest overall mortality; for medications, Cluster 2 also had a comparably higher distribution of Pharmacophenotype 6. CONCLUSION The results of this evaluation suggest that patterns among patient clusters and medication regimens may be observed using empiric methods of unsupervised machine learning in combination with a common data model. These results have potential because while phenotyping approaches have been used to classify heterogenous syndromes in critical illness to better define treatment response, the entire medication administration record has not been incorporated in those analyses. Applying knowledge of these patterns at the bedside requires further algorithm development and clinical application but may have the future potential to be leveraged in guiding medication-related decision making to improve treatment outcomes.
Collapse
Affiliation(s)
- Andrea Sikora
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA USA
| | - Alireza Rafiei
- Department of Computer Science and Informatics, Emory University, Atlanta, GA USA
| | - Milad Ghiasi Rad
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Kelli Keats
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA USA
| | - Susan E. Smith
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA USA
| | - John W. Devlin
- Northeastern University School of Pharmacy, Boston, MA USA
- Brigham and Women’s Hospital, Division of Pulmonary and Critical Care Medicine, Boston, MA USA
| | - David J. Murphy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA USA
| | - Brian Murray
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - MRC-ICU Investigator Team
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Augusta, GA USA
- Department of Computer Science and Informatics, Emory University, Atlanta, GA USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA USA
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA USA
- Northeastern University School of Pharmacy, Boston, MA USA
- Brigham and Women’s Hospital, Division of Pulmonary and Critical Care Medicine, Boston, MA USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA USA
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|