Wu W, Zhang Y. Novel adaptive zeroing neural dynamics schemes for temporally-varying linear equation handling applied to arm path following and target motion positioning.
Neural Netw 2023;
165:435-450. [PMID:
37331233 DOI:
10.1016/j.neunet.2023.05.056]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
While the handling for temporally-varying linear equation (TVLE) has received extensive attention, most methods focused on trading off the conflict between computational precision and convergence rate. Different from previous studies, this paper proposes two complete adaptive zeroing neural dynamics (ZND) schemes, including a novel adaptive continuous ZND (ACZND) model, two general variable time discretization techniques, and two resultant adaptive discrete ZND (ADZND) algorithms, to essentially eliminate the conflict. Specifically, an error-related varying-parameter ACZND model with global and exponential convergence is first designed and proposed. To further adapt to the digital hardware, two novel variable time discretization techniques are proposed to discretize the ACZND model into two ADZND algorithms. The convergence properties with respect to the convergence rate and precision of ADZND algorithms are proved via rigorous mathematical analyses. By comparing with the traditional discrete ZND (TDZND) algorithms, the superiority of ADZND algorithms in convergence rate and computational precision is shown theoretically and experimentally. Finally, simulative experiments, including numerical experiments on a specific TVLE solving as well as four application experiments on arm path following and target motion positioning are successfully conducted to substantiate the efficacy, superiority, and practicability of ADZND algorithms.
Collapse