1
|
Leapo LA, Miller ME, Hoyen HA, Pinault GC, Triolo RJ. Implanted Pulse Generators in Lower Extremity Neuroprostheses: A 25-Year Review. Neuromodulation 2025; 28:331-340. [PMID: 38752947 DOI: 10.1016/j.neurom.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Neuroprosthetic devices can improve quality of life by providing an alternative option for motor function lost after spinal cord injury, stroke, and other central nervous system disorders. The objective of this study is to analyze the outcomes of implanted pulse generators that our research group installed in volunteers with paralysis to assist with lower extremity function over a 25-year period, specifically, to determine survival rates and common modes of malfunction, reasons for removal or revision, and precipitating factors or external events that may have adversely influenced device performance. MATERIALS AND METHODS Our implantable receiver-stimulator (IRS-8) and implantable stimulator-telemeter (IST-12 and IST-16) device histories were retrospectively reviewed through surgical notes, regulatory documentation, and manufacturing records from 1996 to 2021. RESULTS Most of the 65 devices (64.6%) implanted in 43 volunteers remain implanted and operational. Seven underwent explantation owing to infection; seven had internal failures, and six were physically broken by external events. Of the 22 devices explanted, 15 were successfully replaced to restore recipients' enhanced functionality. There were no instances of sepsis or major health complications. The five infections that followed all 93 IRS and IST lower extremity research surgeries during this period indicate a pooled infection rate of 5.4%. The Kaplan-Meier analysis of technical malfunctions between the implant date and most recent follow-up shows five-, ten-, and 20-year device survival rates of 92%, 84%, and 71%, respectively. CONCLUSIONS Incidence of malfunction is similar to, whereas infection rates are slightly higher than, other commonly implanted medical devices. Future investigations will focus on infection prevention, modifying techniques on the basis of recipient demographics, lifestyle factors, and education, and integrating similar experience of motor neuroprostheses used in other applications.
Collapse
Affiliation(s)
| | - Michael E Miller
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Harry A Hoyen
- Case Western Reserve University, Cleveland, OH, USA; MetroHealth Medical Center, Cleveland, OH, USA
| | - Gilles C Pinault
- Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Ronald J Triolo
- Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
2
|
Patient's intention detection and control for sit-stand mechanism of an assistive device for paraplegics. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Freeberg MJ, Pinault GCJ, Tyler DJ, Triolo RJ, Ansari R. Chronic nerve health following implantation of femoral nerve cuff electrodes. J Neuroeng Rehabil 2020; 17:95. [PMID: 32664972 PMCID: PMC7362538 DOI: 10.1186/s12984-020-00720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Peripheral nerve stimulation with implanted nerve cuff electrodes can restore standing, stepping and other functions to individuals with spinal cord injury (SCI). We performed the first study to evaluate the clinical electrodiagnostic changes due to electrode implantation acutely, chronic presence on the nerve peri- and post-operatively, and long-term delivery of electrical stimulation. METHODS A man with bilateral lower extremity paralysis secondary to cervical SCI sustained 5 years prior to enrollment received an implanted standing neuroprosthesis including composite flat interface nerve electrodes (C-FINEs) electrodes implanted around the proximal femoral nerves near the inguinal ligaments. Electromyography quantified neurophysiology preoperatively, intraoperatively, and through 1 year postoperatively. Stimulation charge thresholds, evoked knee extension moments, and weight distribution during standing quantified neuroprosthesis function over the same interval. RESULTS Femoral compound motor unit action potentials increased 31% in amplitude and 34% in area while evoked knee extension moments increased significantly (p < 0.01) by 79% over 1 year of rehabilitation with standing and quadriceps exercises. Charge thresholds were low and stable, averaging 19.7 nC ± 6.2 (SEM). Changes in saphenous nerve action potentials and needle electromyography suggested minor nerve irritation perioperatively. CONCLUSIONS This is the first human trial reporting acute and chronic neurophysiologic changes due to application of and stimulation through nerve cuff electrodes. Electrodiagnostics indicated preserved nerve health with strengthened responses following stimulated exercise. Temporary electrodiagnostic changes suggest minor nerve irritation only intra- and peri-operatively, not continuing chronically nor impacting function. These outcomes follow implantation of a neuroprosthesis enabling standing and demonstrate the ability to safely implant electrodes on the proximal femoral nerve close to the inguinal ligament. We demonstrate the electrodiagnostic findings that can be expected from implanting nerve cuff electrodes and their time-course for resolution, potentially applicable to prostheses modulating other peripheral nerves and functions. TRIAL REGISTRATION ClinicalTrials.gov NCT01923662 , retrospectively registered August 15, 2013.
Collapse
Affiliation(s)
- Max J Freeberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology (APT) Center, Cleveland, OH, USA.
| | - Gilles C J Pinault
- Advanced Platform Technology (APT) Center, Cleveland, OH, USA
- Department of Surgery, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology (APT) Center, Cleveland, OH, USA
| | - Ronald J Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology (APT) Center, Cleveland, OH, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Rahila Ansari
- Advanced Platform Technology (APT) Center, Cleveland, OH, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil 2020; 17:43. [PMID: 32151268 PMCID: PMC7063740 DOI: 10.1186/s12984-020-00667-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
The field of prosthetics has been evolving and advancing over the past decade, as patients with missing extremities are expecting to control their prostheses in as normal a way as possible. Scientists have attempted to satisfy this expectation by designing a connection between the nervous system of the patient and the prosthetic limb, creating the field of neuroprosthetics. In this paper, we broadly review the techniques used to bridge the patient's peripheral nervous system to a prosthetic limb. First, we describe the electrical methods including myoelectric systems, surgical innovations and the role of nerve electrodes. We then describe non-electrical methods used alone or in combination with electrical methods. Design concerns from an engineering point of view are explored, and novel improvements to obtain a more stable interface are described. Finally, a critique of the methods with respect to their long-term impacts is provided. In this review, nerve electrodes are found to be one of the most promising interfaces in the future for intuitive user control. Clinical trials with larger patient populations, and for longer periods of time for certain interfaces, will help to evaluate the clinical application of nerve electrodes.
Collapse
Affiliation(s)
- Kadir A Yildiz
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Motion Analysis Laboratory, W. Hall Wendel, Jr., Musculoskeletal Research, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Freeberg MJ, Ansari R, Pinault GCJ, Lombardo LM, Miller ME, Tyler DJ, Triolo RJ. Intraoperative Responses May Predict Chronic Performance of Composite Flat Interface Nerve Electrodes on Human Femoral Nerves. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2317-2327. [PMID: 31689196 PMCID: PMC6938031 DOI: 10.1109/tnsre.2019.2951079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral nerve cuff electrodes (NCEs) in motor system neuroprostheses can generate strong muscle contractions and enhance surgical efficiency by accessing multiple muscles from a single proximal location. Predicting chronic performance of high contact density NCEs based on intraoperative observations would facilitate implantation at locations that maximize selective recruitment, immediate connection of optimal contacts to implanted pulse generators (IPGs) with limited output channels, and initiation of postoperative rehabilitation as soon as possible after surgery. However, the stability of NCE intraoperative recruitment to predict chronic performance has not been documented. Here we report the first-in-human application of a specific NCE, the composite flat interface nerve electrode (C-FINE), at a new and anatomically challenging location on the femoral nerve close to the inguinal ligaments. EMG and moment recruitment curves were recorded for each of the 8 contacts in 2 C-FINE intraoperatively, perioperatively, and chronically for 6 months. Intraoperative measurements predicted chronic outcomes for 87.5% of contacts with 14/16 recruiting the same muscles at 6 months as intraoperatively. In both 8-contact C-FINEs, 3 contacts elicited hip flexion and 5 selectively generated knee extension, 3 of which activated independent motor unit populations each sufficient to support standing. Recruitment order stabilized in less than 3 weeks and did not change thereafter. While confirmation of these results will be required with future studies and implant locations, this suggests that remobilization and stimulated exercise may be initiated 3 weeks after surgery with little risk of altering performance.
Collapse
|
6
|
Comparative effects of implanted electrodes with differing contact patterns on peripheral nerve regeneration and functional recovery. Neurosci Res 2019; 145:22-29. [DOI: 10.1016/j.neures.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
|
7
|
Wang J, Wang H, Thakor NV, Lee C. Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode. ACS NANO 2019; 13:3589-3599. [PMID: 30875191 DOI: 10.1021/acsnano.9b00140] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Muscle function loss can result from multiple nervous system diseases including spinal cord injury (SCI), stroke, and multiple sclerosis (MS). Electrical muscle stimulation is clinically employed for rehabilitative and therapeutic purpose and typically requires mA-level stimulation current. Here, we report electrical muscle stimulation, which is directly powered by a stacked-layer triboelectric nanogenerator (TENG) through a flexible multiple-channel intramuscular electrode. This multiple-channel intramuscular electrode allows mapping of motoneurons that is sparsely distributed in the muscle tissue and thus enables high efficiency TENG muscle stimulation, although the short-circuit current of the TENG is only 35 μA. With a stimulation efficiency matrix, we find the electrical muscle stimulation efficiency is affected by two factors, namely, the electrode-motoneuron position, and the stimulation waveform polarity. To test whether it is a universal phenomenon for electrical stimulation, we then further investigate with the conventional square wave current stimulation and confirm that the stimulation efficiency is also affected by these two factors. Thus, we develop a self-powered direct muscle stimulation system with a TENG as power source and waveform generator, and a multiple-channel intramuscular electrode to allow motoneuron mapping for stimulation efficiency optimization. We believe such self-powered system could be potentially used for rehabilitative and therapeutic purpose to treat muscle function loss.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive, #05-COR , Singapore 117456 , Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program , National University of Singapore , 5 Engineering Drive 1 , Singapore 117608 , Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park , Suzhou 215123 , P. R. China
| | - Hao Wang
- Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive, #05-COR , Singapore 117456 , Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program , National University of Singapore , 5 Engineering Drive 1 , Singapore 117608 , Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park , Suzhou 215123 , P. R. China
| | - Nitish V Thakor
- Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive, #05-COR , Singapore 117456 , Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering , National University of Singapore , 4 Engineering Drive 3 , Singapore 117583 , Singapore
- Singapore Institute for Neurotechnology , National University of Singapore , 28 Medical Drive, #05-COR , Singapore 117456 , Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program , National University of Singapore , 5 Engineering Drive 1 , Singapore 117608 , Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park , Suzhou 215123 , P. R. China
| |
Collapse
|
8
|
Srinivasan S, Vyas K, McAvoy M, Calvaresi P, Khan OF, Langer R, Anderson DG, Herr H. Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Front Neurol 2019; 10:252. [PMID: 30967830 PMCID: PMC6438882 DOI: 10.3389/fneur.2019.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
Given the increasing use of regenerative free muscle flaps for various reconstructive procedures and neuroprosthetic applications, there is great interest and value in their enhanced regeneration, revascularization, and reinnervation for improved functional recovery. Here, we implant polyimide-based mircroelectrodes on free flap grafts and perform electrical stimulation for 6 weeks in a murine model. Using electrophysiological and histological assessments, we compare outcomes of stimulated grafts with unstimulated control grafts. We find delayed reinnervation and abnormal electromyographic (EMG) signals, with significantly more polyphasia, lower compound muscle action potentials and higher fatigability in stimulated animals. These metrics are suggestive of myopathy in the free flap grafts stimulated with the electrode. Additionally, active inflammatory processes and partial necrosis are observed in grafts stimulated with the implanted electrode. The results suggest that under this treatment protocol, implanted epimysial electrodes and electrical stimulation to deinnervated, and devascularized flaps during the early recovery phase may be detrimental to regeneration. Future work should determine the optimal implantation and stimulation window for accelerating free muscle graft regeneration.
Collapse
Affiliation(s)
- Shriya Srinivasan
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Malia McAvoy
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Calvaresi
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel G. Anderson
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hugh Herr
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Kilgore KL, Peckham PH. Stimulation for Return of Upper-Extremity Function. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Long-Term Performance and User Satisfaction With Implanted Neuroprostheses for Upright Mobility After Paraplegia: 2- to 14-Year Follow-Up. Arch Phys Med Rehabil 2017; 99:289-298. [PMID: 28899825 DOI: 10.1016/j.apmr.2017.08.470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/21/2017] [Accepted: 08/06/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To quantify the long-term (>2y) effects of lower extremity (LE) neuroprostheses (NPs) for standing, transfers, stepping, and seated stability after spinal cord injury. DESIGN Single-subject design case series with participants acting as their own concurrent controls, including retrospective data review. SETTING Hospital-based clinical biomechanics laboratory with experienced (>20y in the field) research biomedical engineers, a physical therapist, and medical monitoring review. PARTICIPANTS Long-term (6.2±2.7y) at-home users (N=22; 19 men, 3 women) of implanted NPs for trunk and LE function with chronic (14.4±7.1y) spinal cord injury resulting in full or partial paralysis. INTERVENTIONS Technical and clinical performance measurements, along with user satisfaction surveys. MAIN OUTCOME MEASURES Knee extension moment, maximum standing time, body weight supported by lower extremities, 3 functional standing tasks, 2 satisfaction surveys, NP usage, and stability of implanted components. RESULTS Stimulated knee extension strength and functional capabilities were maintained, with 94% of implant recipients reporting being very or moderately satisfied with their system. More than half (60%) of the participants were still using their implanted NPs for exercise and function for >10min/d on nearly half or more of the days monitored; however, maximum standing times and percentage body weight through LEs decreased slightly over the follow-up interval. Stimulus thresholds were uniformly stable. Six-year survival rates for the first-generation implanted pulse generator (IPG) and epimysial electrodes were close to 90%, whereas those for the second-generation IPG along with the intramuscular and nerve cuff electrodes were >98%. CONCLUSIONS Objective and subjective measures of the technical and clinical performances of implanted LE NPs generally remained consistent for 22 participants after an average of 6 years of unsupervised use at home. These findings suggest that implanted LE NPs can provide lasting benefits that recipients value.
Collapse
|
11
|
Freeberg MJ, Stone MA, Triolo RJ, Tyler DJ. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness. J Neural Eng 2017; 14:036022. [PMID: 28287078 DOI: 10.1088/1741-2552/aa6632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. APPROACH Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite's capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. MAIN RESULTS In vitro inflation tests showed effective CNRs (1.93 ± 0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly between implant and explant (p > 0.15 for all measures). Axonal density and myelin sheath thickness was not significantly different within the electrode compared to sections greater than 2 cm proximal to implanted cuffs (p > 0.14 for all measures). SIGNIFICANCE We present the design and verification of a novel nerve cuff electrode, the C-FINE. Laminar manufacturing processes allow C-FINE stiffness to be configured for specific applications. Here, the central region in the configuration tested is stiff to reshape or conform to the target nerve, while edges are highly flexible to bend along its length. The C-FINE occupies less volume than other NCEs, making it suitable for implantation in highly mobile locations near joints. Design constraints during simulated transient swelling were verified in vitro. Maintenance of nerve health in various challenging anatomical locations (sciatic and median/ulnar nerves) was verified in a chronic feline model in vivo.
Collapse
Affiliation(s)
- M J Freeberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | | | | | | |
Collapse
|
12
|
Schiefer MA, Freeberg M, Pinault GJC, Anderson J, Hoyen H, Tyler DJ, Triolo RJ. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng 2013; 10:056006. [PMID: 23918148 DOI: 10.1088/1741-2560/10/5/056006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical stimulation has been shown effective in restoring basic lower extremity motor function in individuals with paralysis. We tested the hypothesis that a flat interface nerve electrode (FINE) placed around the human tibial or common peroneal nerve above the knee can selectively activate each of the most important muscles these nerves innervate for use in a neuroprosthesis to control ankle motion. APPROACH During intraoperative trials involving three subjects, an eight-contact FINE was placed around the tibial and/or common peroneal nerve, proximal to the popliteal fossa. The FINE's ability to selectively recruit muscles innervated by these nerves was assessed. Data were used to estimate the potential to restore active plantarflexion or dorsiflexion while balancing inversion and eversion using a biomechanical simulation. MAIN RESULTS With minimal spillover to non-targets, at least three of the four targets in the tibial nerve, including two of the three muscles constituting the triceps surae, were independently and selectively recruited in all subjects. As acceptable levels of spillover increased, recruitment of the target muscles increased. Selective activation of muscles innervated by the peroneal nerve was more challenging. SIGNIFICANCE Estimated joint moments suggest that plantarflexion sufficient for propulsion during stance phase of gait and dorsiflexion sufficient to prevent foot drop during swing can be achieved, accompanied by a small but tolerable inversion or eversion moment.
Collapse
Affiliation(s)
- M A Schiefer
- Louis Stokes Cleveland Department of Veterans' Affairs Medical Center, Cleveland OH, USA. Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH, USA. MetroHealth Medical Center, Cleveland OH, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Triolo RJ, Bailey SN, Lombardo LM, Miller ME, Foglyano K, Audu ML. Effects of intramuscular trunk stimulation on manual wheelchair propulsion mechanics in 6 subjects with spinal cord injury. Arch Phys Med Rehabil 2013; 94:1997-2005. [PMID: 23628377 DOI: 10.1016/j.apmr.2013.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. DESIGN Single-subject design case series with subjects acting as their own concurrent controls. SETTING Hospital-based clinical biomechanics laboratory. PARTICIPANTS Individuals (N=6; 4 men, 2 women; mean age ± SD, 46 ± 10.8y) who were long-time users (6.1 ± 3.9y) of implanted neuroprostheses for lower extremity function and had chronic (8.6 ± 2.8y) midcervical- or thoracic-level injuries (C6-T10). INTERVENTIONS Continuous low-level stimulation to the hip (gluteus maximus, posterior adductor, or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. MAIN OUTCOME MEASURES Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length, maximum forward lean), and peak shoulder moment at preferred speed over 10-m level surface; speed, pushrim kinetics, and subjective ratings of effort for level 100-m sprints and up a 30.5-m ramp of approximately 5% grade. RESULTS Three of 5 subjects demonstrated reduced peak resultant pushrim forces (P≤.014) and improved efficiency (P≤.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in 3 subjects and increased in 2 others (P<.001). Maximal forward trunk lean also increased by 19% to 26% (P<.001) with stimulation in these 3 subjects. Stroke lengths were unchanged by stimulation in all subjects, and 2 showed extremely small (5%) but statistically significant increases in cadence (P≤.021). Performance measures for sprints and inclines were generally unchanged with stimulation; however, subjects consistently rated propulsion with stimulation to be easier for both surfaces. CONCLUSIONS Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort.
Collapse
Affiliation(s)
- Ronald J Triolo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| | | | | | | | | | | |
Collapse
|
14
|
Triolo RJ, Bailey SN, Miller ME, Lombardo LM, Audu ML. Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil 2013; 94:1766-75. [PMID: 23500182 DOI: 10.1016/j.apmr.2013.02.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/24/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the stimulated strength of the paralyzed gluteal and paraspinal muscles and their effects on the seated function of individuals with paralysis. DESIGN Case series with subjects acting as their own concurrent controls. SETTING Hospital-based clinical biomechanics laboratory. PARTICIPANTS Users (N=8) of implanted neuroprostheses for lower extremity function with low-cervical or thoracic level injuries. INTERVENTIONS Dynamometry and digital motion capture both with and without stimulation to the hip and trunk muscles. MAIN OUTCOME MEASURES Isometric trunk extension moment at 0°, 15°, and 30° of flexion; seated stability in terms of simulated isokinetic rowing; pelvic tilt, shoulder height, loaded and unloaded bimanual reaching to different heights, and subjective ratings of difficulty during unsupported sitting. RESULTS Stimulation produced significant increases in mean trunk extension moment (9.2±9.5Nm, P<.001) and rowing force (27.4±23.1N, P<.012) over baseline volitional values. Similarly, stimulation induced positive changes in average pelvic tilt (16.7±15.7°) and shoulder height (2.2±2.5cm) during quiet sitting and bimanual reaching, and increased mean reach distance (5.5±6.6cm) over all subjects, target heights, and loading conditions. Subjects consistently rated tasks with stimulation easier than voluntary effort alone. CONCLUSIONS In spite of considerable intersubject variability, stabilizing the paralyzed trunk with electrical stimulation can positively impact seated posture, extend forward reach, and allow exertion of larger forces on objects in the environment.
Collapse
Affiliation(s)
- Ronald J Triolo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
15
|
The Role of Biomaterials in Stimulating Bioelectrodes. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Nataraj R, Audu ML, Kirsch RF, Triolo RJ. Center of mass acceleration feedback control for standing by functional neuromuscular stimulation: a simulation study. ACTA ACUST UNITED AC 2012; 49:279-96. [PMID: 22773529 DOI: 10.1682/jrrd.2010.12.0235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics because of its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing nondisabled subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, we generated data to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper-limb (UL) loading required to stabilize against disturbances. Compared with the clinical case of maximum constant excitation, the controller reduced UL loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and development of user-specific control systems.
Collapse
Affiliation(s)
- Raviraj Nataraj
- Motion Study Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
17
|
Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 2012; 11:33. [PMID: 22715940 PMCID: PMC3438028 DOI: 10.1186/1475-925x-11-33] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/14/2012] [Indexed: 01/06/2023] Open
Abstract
The control of robotic prostheses based on pattern recognition algorithms is a widely studied subject that has shown promising results in acute experiments. The long-term implementation of this technology, however, has not yet been achieved due to practical issues that can be mainly attributed to the use of surface electrodes and their highly environmental dependency. This paper describes several implantable electrodes and discusses them as a solution for the natural control of artificial limbs. In this context "natural" is defined as producing control over limb movement analogous to that of an intact physiological system. This includes coordinated and simultaneous movements of different degrees of freedom. It also implies that the input signals must come from nerves or muscles that were originally meant to produce the intended movement and that feedback is perceived as originating in the missing limb without requiring burdensome levels of concentration. After scrutinizing different electrode designs and their clinical implementation, we concluded that the epimysial and cuff electrodes are currently promising candidates to achieving a long-term stable and natural control of robotic prosthetics, provided that communication from the electrodes to the outside of the body is guaranteed.
Collapse
Affiliation(s)
- Max Ortiz-Catalan
- Department of Signals and Systems, Biomedical Engineering Division, Chalmers University of Technology, Göteborg, Sweden
- Centre of Orthopaedic Osseointegration, Department of Orthopaedics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Rickard Brånemark
- Centre of Orthopaedic Osseointegration, Department of Orthopaedics, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Bo Håkansson
- Department of Signals and Systems, Biomedical Engineering Division, Chalmers University of Technology, Göteborg, Sweden
| | - Jean Delbeke
- School of Medicine (MD), Institute of Neuroscience (SSS/IoNS/COSY), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Triolo RJ, Nogan Bailey S, Miller ME, Rohde LM, Anderson JS, Davis JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Arch Phys Med Rehabil 2012; 93:896-904. [PMID: 22541312 PMCID: PMC4111081 DOI: 10.1016/j.apmr.2012.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. DESIGN Case series. SETTING Research or outpatient physical therapy departments of 4 academic hospitals. PARTICIPANTS Subjects (N=15) with thoracic or low cervical level spinal cord injuries who had received the 8-channel neuroprosthesis for exercise and standing. INTERVENTION After completing rehabilitation with the device, the subjects were discharged to unrestricted home use of the system. A series of assessments were performed before discharge and at a follow-up appointment approximately 1 year later. MAIN OUTCOME MEASURES Neuroprosthesis usage, maximum standing time, body weight support, knee strength, knee fatigue index, electrode stability, and component survivability. RESULTS Levels of maximum standing time, body weight support, knee strength, and knee fatigue index were not statistically different from discharge to follow-up (P>.05). Additionally, neuroprosthesis usage was consistent with subjects choosing to use the system on approximately half of the days during each monitoring period. Although the number of hours using the neuroprosthesis remained constant, subjects shifted their usage to more functional standing versus more maintenance exercise, suggesting that the subjects incorporated the neuroprosthesis into their lives. Safety and reliability of the system were demonstrated by electrode stability and a high component survivability rate (>90%). CONCLUSIONS This group of 15 subjects is the largest cohort of implanted lower-extremity neuroprosthetic exercise and standing system users. The safety and efficiency data from this group, and acceptance of the neuroprosthesis as demonstrated by continued usage, indicate that future efforts toward commercialization of a similar device may be warranted.
Collapse
Affiliation(s)
- Ronald J. Triolo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center (Cleveland OH)
- Case Western Reserve University (Cleveland, OH)
| | | | - Michael E. Miller
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center (Cleveland OH)
| | | | - James S. Anderson
- Case Western Reserve University (Cleveland, OH)
- MetroHealth Medical Center (Cleveland OH)
| | - John A. Davis
- Tulane University Medical Center (New Orleans, LA), during study: Case Western Reserve University and MetroHealth Medical Center (Cleveland OH)
| | - James J. Abbas
- Arizona State University (Phoenix AZ), during study: University of Kentucky (Lexington KY)
| | | | | | - David R. Gater
- Richmond VA Medical Center / Virginia Commonwealth University (Richmond VA), during study: University of Kentucky and Lexington Veterans Affairs Medical Center (Lexington KY)
| | | |
Collapse
|
19
|
Nataraj R, Audu ML, Kirsch RF, Triolo RJ. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study. IEEE Trans Neural Syst Rehabil Eng 2010; 18:646-57. [PMID: 20923741 DOI: 10.1109/tnsre.2010.2083693] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.
Collapse
Affiliation(s)
- Raviraj Nataraj
- Biomedical Engineering Department at Case Western Reserve University and Cleveland Veterans Affairs Medical Center, Cleveland, OH 44109, USA.
| | | | | | | |
Collapse
|
20
|
Schiefer MA, Polasek KH, Triolo RJ, Pinault GC, Tyler DJ. Intraoperative demonstration of selective stimulation of the common human femoral nerve with a FINE. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:610-3. [PMID: 19963718 DOI: 10.1109/iembs.2009.5332757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have tested the hypothesis that the Flat Interface Nerve Electrode (FINE) can selectively stimulate each muscle innervated by the common femoral nerve of the human, near the inguinal ligament in a series of intraoperative trials. During routine vascular surgeries, an 8-contact FINE was placed around the common femoral nerve between the inguinal ligament and the first branching point. The efficacy of the FINE to selectively recruit muscles innervated by the femoral nerve was determined from electromyograms (EMGs) recorded in response to electrical stimulation. At least four of the six muscles innervated by the femoral nerve were selectively recruited in all subjects. Of these, at least one muscle was a hip flexor and two muscles were knee extensors. Results from the intraoperative experiments were used to estimate the potential for the electrode to restore knee extension and hip flexion through Functional Electrical Stimulation (FES). Normalized EMGs and biomechanical simulations were used to estimate joint moments and functional efficacy. Estimated knee extension moments exceed the threshold required for the sit-to-stand transition.
Collapse
Affiliation(s)
- Matthew A Schiefer
- Department of Biomedical Engineering at Case Western Reserve University (CWRU), Cleveland, OH 44106 USA.
| | | | | | | | | |
Collapse
|
21
|
Schiefer MA, Polasek KH, Triolo RJ, Pinault GCJ, Tyler DJ. Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 2010; 7:26006. [PMID: 20208125 DOI: 10.1088/1741-2560/7/2/026006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In humans, we tested the hypothesis that a flat interface nerve electrode (FINE) placed around the femoral nerve trunk can selectively stimulate each muscle the nerve innervates. In a series of intraoperative trials during routine vascular surgeries, an eight-contact FINE was placed around the femoral nerve between the inguinal ligament and the first nerve branching point. The capability of the FINE to selectively recruit muscles innervated by the femoral nerve was assessed with electromyograms (EMGs) of the twitch responses to electrical stimulation. At least four of the six muscles innervated by the femoral nerve were independently and selectively recruited in all subjects. Of these, at least one muscle was a hip flexor and at least two were knee extensors. Results from the intraoperative experiments were used to estimate the potential for the electrode to restore knee extension and hip flexion through functional electrical stimulation. Normalized EMGs and biomechanical simulations were used to estimate joint moments and functional efficacy. Estimated knee extension moments exceed the threshold required for the sit-to-stand transition.
Collapse
Affiliation(s)
- M A Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
22
|
Polasek KH, Schiefer MA, Pinault GCJ, Triolo RJ, Tyler DJ. Intraoperative evaluation of the spiral nerve cuff electrode on the femoral nerve trunk. J Neural Eng 2009; 6:066005. [PMID: 19901448 DOI: 10.1088/1741-2560/6/6/066005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evaluation of the Case Western Reserve University spiral nerve cuff electrode on the femoral nerve trunk was performed intraoperatively in four subjects undergoing femoral-popliteal bypass surgery. The threshold, nerve size and selective activation capabilities of the electrode were examined. The activation thresholds for the first muscle to be recruited were 6.3, 9, 10.6, and 37.4 nC with pulse amplitudes ranging from 0.3 to 1 mA. The femoral nerve was found to have an elliptical cross-section with a major axis average length of 9 mm (8-12 mm) and a minor axis length of 1.5 mm. In all four subjects selective activation of the sartorius was obtained. In two subjects, the rectus femoris could also be selectively activated and in one subject the vastus medialis was selectively activated. Each electrode had four independent contacts that were evaluated separately. Small air bubbles were formed in the space over some contacts, preventing stimulation. This occurred in one contact in each electrode, leaving three effective stimulation channels. This issue has been corrected for future studies.
Collapse
Affiliation(s)
- K H Polasek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland OH, USA.
| | | | | | | | | |
Collapse
|
23
|
Fisher LE, Tyler DJ, Anderson JS, Triolo RJ. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J Neural Eng 2009; 6:046010. [PMID: 19602729 DOI: 10.1088/1741-2560/6/4/046010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 +/- 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.
Collapse
Affiliation(s)
- L E Fisher
- Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
24
|
Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Rhode L, Tyler DJ, Triolo RJ. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. IEEE Trans Neural Syst Rehabil Eng 2009; 16:473-8. [PMID: 18990650 DOI: 10.1109/tnsre.2008.2003390] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes the performance of a 16-channel implanted neuroprosthesis for standing and transfers after spinal cord injury including four-contact nerve-cuff electrodes stimulating the femoral nerve for knee extension. Responses of the nerve-cuffs were stable and standing times increased by 600% over time-matched values with a similar eight-channel neuroprosthesis utilizing muscle-based electrodes on vastus lateralis for knee extension.
Collapse
Affiliation(s)
- Lee E Fisher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kilgore KL, Keith MW, Hunter Peckham P. Stimulation for Return of Upper and Lower Extremity Function. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Schiefer MA, Triolo RJ, Tyler DJ. A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 2008; 16:195-204. [PMID: 18403289 PMCID: PMC2920206 DOI: 10.1109/tnsre.2008.918425] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Functional electrical stimulation (FES) can restore limb movements through electrically initiated, coordinated contractions of paralyzed muscles. The peripheral nerve is an attractive site for stimulation using cuff electrodes. Many applications will require the electrode to selectively activate many smaller populations of axons within a common nerve trunk. The purpose of this study is to computationally model the performance of a flat interface nerve electrode (FINE) on the proximal femoral nerve for standing and stepping applications. Simulations investigated multiple FINE configurations to determine the optimal number and locations of contacts for the maximum muscular selectivity. Realistic finite element method (FEM) models were developed from digitized cross sections from cadaver femoral nerve specimens. Electrical potentials were calculated and interpolated voltages were applied to a double-cable axon model. Model output was analyzed to determine selectivity and estimate joint moments with a musculoskeletal model. Simulations indicated that a 22-contact FINE will produce the greatest selectivity. Simulations predicted that an eight-contact FINE can be expected to selectively stimulate each of the six muscles innervated by the proximal femoral nerve, producing a sufficient knee extension moment for the sit-to-stand transition and contributing 60% of the hip flexion moment needed during gait. We conclude that, whereas more contacts produce greater selectivity, eight channels are sufficient for standing and stepping with an FES system using a FINE on the common femoral nerve.
Collapse
Affiliation(s)
- Matthew A. Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Ronald J. Triolo
- Departments of Biomedical Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH 44106 USA, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Dustin J. Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| |
Collapse
|
28
|
Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 2007; 46:255-74. [PMID: 17846639 DOI: 10.1038/sj.sc.3102091] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repair of the injured spinal cord by regeneration therapy remains an elusive goal. In contrast, progress in medical care and rehabilitation has resulted in improved health and function of persons with spinal cord injury (SCI). In the absence of a cure, raising the level of achievable function in mobility and self-care will first and foremost depend on creative use of the rapidly advancing technology that has been so widely applied in our society. Building on achievements in microelectronics, microprocessing and neuroscience, rehabilitation medicine scientists have succeeded in developing functional electrical stimulation (FES) systems that enable certain individuals with SCI to use their paralyzed hands, arms, trunk, legs and diaphragm for functional purposes and gain a degree of control over bladder and bowel evacuation. This review presents an overview of the progress made, describes the current challenges and suggests ways to improve further FES systems and make these more widely available.
Collapse
Affiliation(s)
- K T Ragnarsson
- Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
29
|
Mushahwar VK, Jacobs PL, Normann RA, Triolo RJ, Kleitman N. New functional electrical stimulation approaches to standing and walking. J Neural Eng 2007; 4:S181-97. [PMID: 17873417 DOI: 10.1088/1741-2560/4/3/s05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological trauma that is prevalent predominantly in young individuals. Several interventions in the areas of neuroregeneration, pharmacology and rehabilitation engineering/neuroscience are currently under investigation for restoring function after SCI. In this paper, we focus on the use of neuroprosthetic devices for restoring standing and ambulation as well as improving general health and wellness after SCI. Four neuroprosthetic approaches are discussed along with their demonstrated advantages and their future needs for improved clinical applicability. We first introduce surface functional electrical stimulation (FES) devices for restoring ambulation and highlight the importance of these devices for facilitating exercise activities and systemic physiological activation. Implanted muscle-based FES devices for restoring standing and walking that are currently undergoing clinical trials are then presented. The use of implanted peripheral nerve intraneural arrays of multi-site microelectrodes for providing fine and graded control of force during sit-to-stand maneuvers is subsequently demonstrated. Finally, intraspinal microstimulation (ISMS) of the lumbosacral spinal cord for restoring standing and walking is introduced and its results to date are presented. We conclude with a general discussion of the common needs of the neuroprosthetic devices presented in this paper and the improvements that may be incorporated in the future to advance their clinical utility and user satisfaction.
Collapse
Affiliation(s)
- Vivian K Mushahwar
- Department of Cell Biology and Center for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
30
|
Johnston TE, Betz RR, Smith BT, Benda BJ, Mulcahey MJ, Davis R, Houdayer TP, Pontari MA, Barriskill A, Creasey GH. Implantable FES system for upright mobility and bladder and bowel function for individuals with spinal cord injury. Spinal Cord 2006; 43:713-23. [PMID: 16010275 DOI: 10.1038/sj.sc.3101797] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Postintervention. OBJECTIVES To determine the effectiveness of the Praxis multifunctional implantable functional electrical stimulation (FES) system (Neopraxis Pty. Ltd, Lane Cove, NSW, Australia) to provide standing and stepping ability and bladder and bowel management for individuals with motor complete thoracic level spinal cord injuries (SCI). SETTING Pediatric orthopedic hospital specializing in SCI. SUBJECTS Three males, ages 17 and 21 years, with motor-complete thoracic level SCI and intact lower motor neurons to the muscles targeted for stimulation. METHODS Each subject was successfully implanted with the Praxis FES system. All three subjects received electrodes for upright mobility and the first two subjects received additional electrodes for stimulated bladder and bowel management. Following training, subjects were evaluated in their ability to use FES for nine mobility activities. Acute and chronic experiments of the effect of stimulation on bowel and bladder function were also performed. RESULTS All three subjects could independently stand up from the wheelchair and could walk at least 6 m using a swing through gait pattern. Two subjects were able to independently perform swing through gait for 6 min and one subject was able to independently ascend and descend stairs. Suppression of reflex bladder contractions by neuromodulation (subject 1) and stimulated contractions of the rectum (subject 2) were observed in acute experiments. When stimulation was applied over the course of several weeks, a positive effect on bowel function was measured. Stimulated bladder contractions were not achieved. CONCLUSION The feasibility of using the Praxis FES system for upright mobility and aiding aspects of bladder and bowel function was demonstrated with three subjects with thoracic level SCI.
Collapse
Affiliation(s)
- T E Johnston
- Shriners Hospitals for Children, 3551 North Broad St, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Paralyzed or paretic muscles can be made to contract by applying electrical currents to the intact peripheral motor nerves innervating them. When electrically elicited muscle contractions are coordinated in a manner that provides function, the technique is termed functional electrical stimulation (FES). In more than 40 years of FES research, principles for safe stimulation of neuromuscular tissue have been established, and methods for modulating the strength of electrically induced muscle contractions have been discovered. FES systems have been developed for restoring function in the upper extremity, lower extremity, bladder and bowel, and respiratory system. Some of these neuroprostheses have become commercialized products, and others are available in clinical research settings. Technological developments are expected to produce new systems that have no external components, are expandable to multiple applications, are upgradable to new advances, and are controlled by a combination of signals, including biopotential signals from nerve, muscle, and the brain.
Collapse
Affiliation(s)
- P Hunter Peckham
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
32
|
Kukke SN, Triolo RJ. The effects of trunk stimulation on bimanual seated workspace. IEEE Trans Neural Syst Rehabil Eng 2004; 12:177-85. [PMID: 15218932 DOI: 10.1109/tnsre.2004.827222] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study explores the effects of functional electrical stimulation (FES) of the lumbar trunk extensors on the seated posture and bimanual workspace of subjects with spinal cord injury (SCI). Four subjects with motor complete SCI with implanted intramuscular stimulating electrodes to activate the lumbar erector spinae were studied. The positions of markers on the pelvis, trunk, and hands were monitored by a motion capture system during bimanual reaching maneuvers. To define three-dimensional functional workspace boundaries, subjects swept their hands through the extremes of their range of motion without losing balance while sitting. To characterize forward reach, subjects reached to targets in the sagittal plane while carrying various masses with and without FES. Reaching trials were rated on the seven-point usability rating scale to determine effort and subject preference and change in pelvic angle with stimulation was monitored. There was a consistent change in the seated posture with FES in all subjects that resulted in significant forward or upward (6.85 cm +/- 2.15 cm) shifts in the workspace. Workspace volumes increased for two of the four subjects tested. FES caused significant anterior rotation of the pelvis to restore a more natural lumbar curve without a backrest (19.81 degrees +/- 8.75 degrees). With a backrest, the change in posture with FES allowed individuals with SCI to reach further in the sagittal plane and carry heavier masses by shifting the trunk, allowing increased elbow extension, or a combination of the two mechanisms. Reaching with FES was consistently preferred over reaching without FES. This preliminary study is encouraging for future research on trunk stability and reaching ability with FES.
Collapse
Affiliation(s)
- Sahana N Kukke
- Motion Studies Laboratory, Louis Stokes Cleveland Veterans Affairs Medical Center, OH 44109, USA
| | | |
Collapse
|