1
|
Powell P, Pätzold F, Rouygari M, Furtak M, Kärcher SM, König P. Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements. SENSORS (BASEL, SWITZERLAND) 2024; 24:2949. [PMID: 38733054 PMCID: PMC11086327 DOI: 10.3390/s24092949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
The problem of supporting visually impaired and blind people in meaningful interactions with objects is often neglected. To address this issue, we adapted a tactile belt for enhanced spatial navigation into a bracelet worn on the wrist that allows visually impaired people to grasp target objects. Participants' performance in locating and grasping target items when guided using the bracelet, which provides direction commands via vibrotactile signals, was compared to their performance when receiving auditory instructions. While participants were faster with the auditory commands, they also performed well with the bracelet, encouraging future development of this system and similar systems.
Collapse
Affiliation(s)
- Piper Powell
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
| | - Florian Pätzold
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
| | - Milad Rouygari
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
| | - Marcin Furtak
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
- FeelSpace GmbH, 49069 Osnabrück, Germany
| | - Silke M. Kärcher
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
- FeelSpace GmbH, 49069 Osnabrück, Germany
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany (F.P.); (M.R.); (S.M.K.); (P.K.)
- Department of Neurophysiology, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
2
|
Jadhwani PL, Harjpal P. A Review of Artificial Intelligence-Based Gait Evaluation and Rehabilitation in Parkinson's Disease. Cureus 2023; 15:e47118. [PMID: 38021909 PMCID: PMC10648061 DOI: 10.7759/cureus.47118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a long-term degenerative disease of the central nervous system that affects both motor and non-motor functions. In most cases, symptoms develop gradually, with non-motor symptoms increasing in frequency as the condition progresses. Tremors, stiffness, slow movements, and difficulty walking are some of the early symptoms. There may be problems with cognition, behavior, sleep, and thinking. Dementia caused by PD becomes more common as the disease progresses. The development of PD is linked to certain sequences of motion that eventually contribute to diminished function. Patients with Parkinson's disease (PWPD) have a sluggish, scattered gait that is accompanied by intermittent freezing of gait (FOG), in which efficient heading briefly pauses. In individuals with severe PD, FOG is a neurological deficit that is related to falls and has an unfavorable impact on the patient's standard of living. Artificial intelligence (AI) and ambient intelligence (AmI) are inextricably linked as intelligence is the ability to gain new information and employ it in novel contexts. The ambience is what accompanies us, while artificial represents something developed by humans. Wearable technologies are being designed to recognize FOG and support patients in the beginning to walk again via periodic cueing. The article proposes a unique automated approach for action description that utilizes AI to carry out a non-intrusive, markerless evaluation in real-time and with full robotics. This computerized method accelerates detection and safeguards from human error. Despite significant improvements brought about by the advent of novel technologies, the available assessment platforms still fail to strike the ideal equilibrium among expenditure, diagnostic precision, velocity, and simplicity. The value of the recommended approach can be seen through a comparison of the gait parameters collected by each of the motion-tracking gadgets.
Collapse
Affiliation(s)
- Purvi L Jadhwani
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Harjpal
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Kahya M, Hackman D, Jacobs L, Nilsson D, Rumsey Y, Oddsson LIE. Wearable Technologies Using Peripheral Neuromodulation to Enhance Mobility and Gait Function in Older Adults - A Narrative Review. J Gerontol A Biol Sci Med Sci 2022; 78:831-841. [PMID: 35179580 PMCID: PMC10172983 DOI: 10.1093/gerona/glac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mounting evidence suggests that wearable technologies using peripheral neuromodulation can provide novel ways of improving mobility and gait function in various patient populations including older adults. The purpose of this narrative review is to provide an overview of wearable technologies/devices to improve mobility and gait function through noninvasive peripheral neuromodulation in older adults over the age of 65 and to indicate the suggested mechanism of action behind these technologies. METHODS We performed searches for articles and conference abstracts written in English, using the following databases: Embase Classic+Embase from 1947 to July 15, 2021; Ovid MEDLINE®; Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations, Daily and Versions® from 1946 to July 15, 2021; PubMed; and Scopus. RESULTS Forty-one technologies met the inclusion/exclusion criteria. We found that the primary implementation of the 41 technologies can be divided into three main categories: sensory substitution, sensory augmentation (open loop, closed loop), and motor stimulation. Using these technologies, various aspects of mobility are treated or addressed, including e.g., gait function, fall risk, foot drop, navigating environment, postural control. CONCLUSIONS This narrative review summarizes wearable technologies that are currently commercially available and in stages of research and development. Overall, studies suggest that wearable peripheral neuromodulation technologies can improve aspects of mobility for older adults. Existing literature suggests that these technologies may lead to physiological changes in the brain through sensory re-weighting or other neuroplastic mechanisms to enhance the performance of mobility and gait function in older adults over the age of 65.
Collapse
Affiliation(s)
- Melike Kahya
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, MA, USA
| | | | | | | | | | - Lars I E Oddsson
- University of Minnesota, MN, USA.,RxFunction Inc. MN, USA.,Ben Gurion University of the Negev, Israel
| |
Collapse
|
4
|
Kumar NA, Hur P. A Handheld Gyroscopic Device for Haptics and Hand Rehabilitation. IEEE TRANSACTIONS ON HAPTICS 2022; 15:109-114. [PMID: 35061593 DOI: 10.1109/toh.2022.3144581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose a novel, gyroscopic device for haptics and hand rehabilitation, named Gymball. It consists of a fully actuated rotor-gimbal assembly encased in an easy-to-grip appealing design. When held, the device generates a gyroscopic torque which causes the user's hand to move about the wrist. Interviews with occupational therapists, simulations, and proof-of-concept models helped determine the design specifications of Gymball. Compared to the existing gyroscopic devices, Gymball has the following advantages. (i) A smaller form-factor with better user appeal while achieving 0.5 Nm torque. (ii) A wire entanglement-free design allowing complete rotations of the rotor-gimbal assembly. (iii) Negligible rotary imbalances owing to a symmetrical design, resulting in haptic signals with minimal vibratory noise. In this paper, we detail the design and analysis of the device. A feasibility study was conducted to validate prospect of using the device for haptic feedback or therapy. Specifically, the study focused on (i) whether the gyroscopic torque generated by the device can passively move the user's hand about the wrist and (ii) whether the produced hand motion can be controlled. The results show that Gymball can successfully generate about 7° of hand oscillations. The amplitude and frequency of the hand oscillations can be controlled using the speed of rotor and gimbal.
Collapse
|
5
|
Knapp HA, Sobolewski BA, Dean JC. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2017-2026. [PMID: 34550889 DOI: 10.1109/tnsre.2021.3114991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hip abductor proprioception contributes to the control of mediolateral foot placement, which varies with step-by-step fluctuations in pelvis dynamics. Prior work has used hip abductor vibration as a sensory probe to investigate the link between vibration within a single step and subsequent foot placement. Here, we extended prior findings by applying time and location varying vibration in every step, seeking to predictably manipulate the continuous, step-by-step relationship between pelvis dynamics and foot placement. We compared participants' (n = 32; divided into two groups of 16 with slightly different vibration control) gait behavior across four treadmill walking conditions: 1) No feedback; 2) Random feedback, with vibration unrelated to pelvis motion; 3) Augmented feedback, with vibration designed to evoke proprioceptive feedback paralleling the actual pelvis motion; 4) Disrupted feedback, with vibration designed to evoke proprioceptive feedback inversely related to pelvis motion. We hypothesized that the relationship between pelvis dynamics and foot placement would be strengthened by Augmented feedback but weakened by Disrupted feedback. For both participant groups, the strength of the relationship between pelvis dynamics at the start of a step and foot placement at the end of a step was significantly (p ≤ 0.0002) influenced by the feedback condition. The link between pelvis dynamics and foot placement was strongest with Augmented feedback, but not significantly weakened with Disrupted feedback, partially supporting our hypotheses. Our approach to augmenting proprioceptive feedback during gait may have implications for clinical populations with a weakened relationship between pelvis motion and foot placement.
Collapse
|
6
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
7
|
Hur P, Pan YT, DeBuys C. Free Energy Principle in Human Postural Control System: Skin Stretch Feedback Reduces the Entropy. Sci Rep 2019; 9:16870. [PMID: 31727928 PMCID: PMC6856340 DOI: 10.1038/s41598-019-53028-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Human upright standing involves an integration of multiple sensory inputs such as vision, vestibular and somatosensory systems. It has been known that sensory deficits worsen the standing balance. However, how the modulation of sensory information contributes to postural stabilization still remains an open question for researchers. The purpose of this work was to formulate the human standing postural control system in the framework of the free-energy principle, and to investigate the efficacy of the skin stretch feedback in enhancing the human standing balance. Previously, we have shown that sensory augmentation by skin stretch feedback at the fingertip could modulate the standing balance of the people with simulated sensory deficits. In this study, subjects underwent ten 30-second trials of quiet standing balance with and without skin stretch feedback. Visual and vestibular sensory deficits were simulated by having each subject close their eyes and tilt their head back. We found that sensory augmentation by velocity-based skin stretch feedback at the fingertip reduced the entropy of the standing postural sway of the people with simulated sensory deficits. This result aligns with the framework of the free energy principle which states that a self-organizing biological system at its equilibrium state tries to minimize its free energy either by updating the internal state or by correcting body movement with appropriate actions. The velocity-based skin stretch feedback at the fingertip may increase the signal-to-noise ratio of the sensory signals, which in turn enhances the accuracy of the internal states in the central nervous system. With more accurate internal states, the human postural control system can further adjust the standing posture to minimize the entropy, and thus the free energy.
Collapse
Affiliation(s)
- Pilwon Hur
- Texas A&M University, Department of Mechanical Engineering, College Station, TX, 77843, USA.
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, TX, 77843, USA.
| | - Yi-Tsen Pan
- Texas A&M University, Department of Mechanical Engineering, College Station, TX, 77843, USA
| | - Christian DeBuys
- Texas A&M University, Department of Mechanical Engineering, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Kemlin C, Verite F, Marchand-Pauvert V, Pradat PF, Pradat-Diehl P, Giron A, Bachta W. Closed-Loop Control of the Centre of Pressure in Post-Stroke Patients With Balance Impairments. IEEE Trans Neural Syst Rehabil Eng 2019; 27:265-274. [PMID: 30640618 DOI: 10.1109/tnsre.2019.2892177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When a lightly touched surface is moved according to a closed-loop control law, it has been shown in young adults that the centre of pressure (CoP) can be displaced in a controllable way without the conscious cooperation of participants. In this closed-loop paradigm, the surface velocity was continuously adjusted according to the CoP position. Since the closed-loop control of the CoP does not require the participant's voluntary cooperation, it could be of interest for the development of innovative biofeedback devices in balance rehabilitation. Before anticipating the implementation of this closed-loop control paradigm with patients, it is necessary to establish its effects on people suffering from balance impairments. The aim of this paper was to assess the effects of this CoP closed-loop control in post-stroke (PS) patients and aged-matched healthy controls. Efficacy of the closed-loop control for driving the patients' CoP was assessed using the saturation time and two scores computing the error between the predefined and the current CoP trajectories. 68% and 83% of the trials were considered as successful in patients and controls, respectively. The global tracking error of the closed-loop score was similar between the two groups. However, when examining the real CoP displacement from the starting position to the desired one, PS patients responded to the closed-loop control to a lesser extent than controls. These results, obtained in the same conditions for healthy and PS individuals could be improved by tuning the closed-loop parameters according to individual characteristics. This paper paves the road towards the development of involuntary/automatic biofeedback techniques in more ecological conditions.
Collapse
|
9
|
Yoon HU, Anil Kumar N, Hur P. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick. Front Neurorobot 2017; 11:31. [PMID: 28690514 PMCID: PMC5481371 DOI: 10.3389/fnbot.2017.00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities.
Collapse
Affiliation(s)
- Han U Yoon
- Department of Mechanical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Namita Anil Kumar
- Department of Mechanical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Pilwon Hur
- Department of Mechanical Engineering, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|