1
|
de Oliveira J, de Souza MA, Assef AA, Maia JM. Multi-Sensing Techniques with Ultrasound for Musculoskeletal Assessment: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9232. [PMID: 36501933 PMCID: PMC9740760 DOI: 10.3390/s22239232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The study of muscle contractions generated by the muscle-tendon unit (MTU) plays a critical role in medical diagnoses, monitoring, rehabilitation, and functional assessments, including the potential for movement prediction modeling used for prosthetic control. Over the last decade, the use of combined traditional techniques to quantify information about the muscle condition that is correlated to neuromuscular electrical activation and the generation of muscle force and vibration has grown. The purpose of this review is to guide the reader to relevant works in different applications of ultrasound imaging in combination with other techniques for the characterization of biological signals. Several research groups have been using multi-sensing systems to carry out specific studies in the health area. We can divide these studies into two categories: human-machine interface (HMI), in which sensors are used to capture critical information to control computerized prostheses and/or robotic actuators, and physiological study, where sensors are used to investigate a hypothesis and/or a clinical diagnosis. In addition, the relevance, challenges, and expectations for future work are discussed.
Collapse
Affiliation(s)
- Jonathan de Oliveira
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Mauren Abreu de Souza
- Graduate Program in Health Technology (PPGTS), Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Amauri Amorin Assef
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| | - Joaquim Miguel Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
- Electronics Engineering Department (DAELN), Federal University of Technology of Paraná (UTFPR), Curitiba 80230-901, Brazil
| |
Collapse
|
2
|
Wang H, Zuo S, Cerezo-Sánchez M, Arekhloo NG, Nazarpour K, Heidari H. Wearable super-resolution muscle-machine interfacing. Front Neurosci 2022; 16:1020546. [PMID: 36466163 PMCID: PMC9714306 DOI: 10.3389/fnins.2022.1020546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Muscles are the actuators of all human actions, from daily work and life to communication and expression of emotions. Myography records the signals from muscle activities as an interface between machine hardware and human wetware, granting direct and natural control of our electronic peripherals. Regardless of the significant progression as of late, the conventional myographic sensors are still incapable of achieving the desired high-resolution and non-invasive recording. This paper presents a critical review of state-of-the-art wearable sensing technologies that measure deeper muscle activity with high spatial resolution, so-called super-resolution. This paper classifies these myographic sensors according to the different signal types (i.e., biomechanical, biochemical, and bioelectrical) they record during measuring muscle activity. By describing the characteristics and current developments with advantages and limitations of each myographic sensor, their capabilities are investigated as a super-resolution myography technique, including: (i) non-invasive and high-density designs of the sensing units and their vulnerability to interferences, (ii) limit-of-detection to register the activity of deep muscles. Finally, this paper concludes with new opportunities in this fast-growing super-resolution myography field and proposes promising future research directions. These advances will enable next-generation muscle-machine interfaces to meet the practical design needs in real-life for healthcare technologies, assistive/rehabilitation robotics, and human augmentation with extended reality.
Collapse
Affiliation(s)
- Huxi Wang
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Siming Zuo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - María Cerezo-Sánchez
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Negin Ghahremani Arekhloo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Kianoush Nazarpour
- Neuranics Ltd., Glasgow, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hadi Heidari
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| |
Collapse
|
3
|
Rabe KG, Jahanandish MH, Fey NP. Ultrasound-Derived Features of Muscle Architecture Provide Unique Temporal Characterization of Volitional Knee Motion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4828-4831. [PMID: 34892290 DOI: 10.1109/embc46164.2021.9630650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sonomyography, or dynamic ultrasound imaging of skeletal muscle, has gained significant interest in rehabilitation medicine. Previously, correlations relating sonomyography features of muscle contraction, including muscle thickness, pennation angle, angle between aponeuroses and fascicle length, to muscle force production, strength and joint motion have been established. Additionally, relationships between grayscale image intensity, or echogenicity, with maximum voluntary isometric contraction of muscle have been noted. However, the time relationship between changes in various sonomyography features during volitional motion has yet to be explored, which would highlight if unique information pertaining to muscle contraction and motion can be obtained from this real-time imaging modality. These new insights could inform how we assess muscle function and/or how we use this modality for assistive device control. Thus, our objective was to characterize the time synchronization of changes in five features of rectus femoris contraction extracted from ultrasound images during seated knee extension and flexion. A cross-correlation analysis was performed on data recorded by a handheld ultrasound system as able-bodied subjects completed seated trials of volitional knee extension and flexion. Changes in muscle thickness, angle between aponeuroses, and mean image echogenicity, a change in brightness of the grayscale image, preceded changes in our estimates of pennation angle and fascicle length. The leading nature of these features suggest they could be objective features for early detection of impending joint motion. Finally, multiple sonomyographic features provided unique temporal information associated with this volitional task.Clinical Relevance-This work evaluates the time relationship between five commonly reported features of skeletal muscle architecture during volitional motion, which can be used for targeted clinical assessments and intent detection.
Collapse
|
4
|
Jahanandish MH, Rabe KG, Fey NP, Hoyt K. Ultrasound Features of Skeletal Muscle Can Predict Kinematics of Upcoming Lower-Limb Motion. Ann Biomed Eng 2020; 49:822-833. [PMID: 32959134 DOI: 10.1007/s10439-020-02617-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Seamless integration of lower-limb assistive devices with the human body requires an intuitive human-machine interface, which would benefit from predicting the intent of individuals in advance of the upcoming motion. Ultrasound imaging was recently introduced as an intuitive sensing interface. The objective of the present study was to investigate the predictability of joint kinematics using ultrasound features of the rectus femoris muscle during a non-weight-bearing knee extension/flexion. Motion prediction accuracy was evaluated in 67 ms increments, up to 600 ms in time. Statistical analysis was used to evaluate the feasibility of motion prediction, and the linear mixed-effects model was used to determine a prediction time window where the joint angle prediction error is barely perceivable by the sample population, hence clinically reliable. Surprisingly, statistical tests revealed that the prediction accuracy of the joint angle was more sensitive to temporal shifts than the accuracy of the joint angular velocity prediction. Overall, predictability of the upcoming joint kinematics using ultrasound features of skeletal muscle was confirmed, and a time window for a statistically and clinically reliable prediction was found between 133 and 142 ms. A reliable prediction of user intent may provide the time needed for processing, control planning, and actuation of the assistive devices at critical points during ambulation, contributing to the intuitive behavior of lower-limb assistive devices.
Collapse
Affiliation(s)
- M Hassan Jahanandish
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kaitlin G Rabe
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nicholas P Fey
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. .,Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA. .,Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Kenneth Hoyt
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. .,Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
AlMohimeed I, Ono Y. Ultrasound Measurement of Skeletal Muscle Contractile Parameters Using Flexible and Wearable Single-Element Ultrasonic Sensor. SENSORS 2020; 20:s20133616. [PMID: 32605006 PMCID: PMC7374409 DOI: 10.3390/s20133616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is considered as a near-constant volume system, and the contractions of the muscle are related to the changes in tissue thickness. Assessment of the skeletal muscle contractile parameters such as maximum contraction thickness (Th), contraction time (Tc), contraction velocity (Vc), sustain time (Ts), and half-relaxation (Tr) provides valuable information for various medical applications. This paper presents a single-element wearable ultrasonic sensor (WUS) and a method to measure the skeletal muscle contractile parameters in A-mode ultrasonic data acquisition. The developed WUS was made of double-layer polyvinylidene fluoride (PVDF) piezoelectric polymer films with a simple and low-cost fabrication process. A flexible, lightweight, thin, and small size WUS would provide a secure attachment to the skin surface without affecting the muscle contraction dynamics of interest. The developed WUS was employed to monitor the contractions of gastrocnemius (GC) muscle of a human subject. The GC muscle contractions were evoked by the electrical muscle stimulation (EMS) at varying EMS frequencies from 2 Hz up to 30 Hz. The tissue thickness changes due to the muscle contractions were measured by utilizing a time-of-flight method in the ultrasonic through-transmission mode. The developed WUS demonstrated the capability to monitor the tissue thickness changes during the unfused and fused tetanic contractions. The tetanic progression level was quantitatively assessed using the parameter of the fusion index (FI) obtained. In addition, the contractile parameters (Th, Tc, Vc, Ts, and Tr) were successfully extracted from the measured tissue thickness changes. In addition, the unfused and fused tetanus frequencies were estimated from the obtained FI-EMS frequency curve. The WUS and ultrasonic method proposed in this study could be a valuable tool for inexpensive, non-invasive, and continuous monitoring of the skeletal muscle contractile properties.
Collapse
Affiliation(s)
- Ibrahim AlMohimeed
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Medical Equipment Technology, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yuu Ono
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Correspondence:
| |
Collapse
|
6
|
Jahanandish MH, Fey NP, Hoyt K. Lower Limb Motion Estimation Using Ultrasound Imaging: A Framework for Assistive Device Control. IEEE J Biomed Health Inform 2019; 23:2505-2514. [PMID: 30629522 PMCID: PMC6616025 DOI: 10.1109/jbhi.2019.2891997] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Powered assistive devices need improved control intuitiveness to enhance their clinical adoption. Therefore, the intent of individuals should be identified and the device movement should adhere to it. Skeletal muscles contract synergistically to produce defined lower limb movements, so unique contraction patterns in lower extremity musculature may provide a means of device joint control. Ultrasound (US) imaging enables direct measurement of the local deformation of muscle segments. Hence, the objective of this study was to assess the feasibility of using US to estimate human lower limb movements. METHODS A novel algorithm was developed to calculate US features of the rectus femoris muscle during a non-weight-bearing knee flexion/extension experiment by nine able-bodied subjects. Five US features of the skeletal muscle tissue were studied, namely thickness, angle between aponeuroses, pennation angle, fascicle length, and echogenicity. A multiscale ridge filter was utilized to extract the structures in the image and a random sample consensus (RANSAC) model was used to segment muscle aponeuroses and fascicles. A localization scheme further guided RANSAC to enable tracking in a US image sequence. Gaussian process regression models were trained using segmented features to estimate both knee joint angle and angular velocity. RESULTS The proposed segmentation-estimation approach could estimate knee joint angle and angular velocity with an average root mean square error value of 7.45° and 0.262 rad/s, respectively. The average processing rate was 3-6 frames/s that is promising toward real-time implementation. CONCLUSION Experimental results demonstrate the feasibility of using US to estimate human lower extremity motion. The ability of the algorithm to work in real time may enable the use of US as a neural interface for lower limb applications. SIGNIFICANCE Intuitive intent recognition of human lower extremity movements using wearable US imaging may enable volitional assistive device control and enhance locomotor outcomes for those with mobility impairments.
Collapse
Affiliation(s)
| | - Nicholas P. Fey
- Department of Bioengineering, University of Texas at Dallas, and the Department of Physical Medicine & Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA, and the Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Jahanandish MH, Fey NP, Hoyt K. Prediction of Distal Lower-Limb Motion Using Ultrasound-Derived Features of Proximal Skeletal Muscle. IEEE Int Conf Rehabil Robot 2019; 2019:71-76. [PMID: 31374609 DOI: 10.1109/icorr.2019.8779360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control of lower-limb assistive devices would benefit from predicting the intent of individuals in advance of upcoming motion, rather than estimating the current states of their motion. Human lower-limb motion estimation using ultrasound (US) image derived features of skeletal muscle has been demonstrated. However, predictability of motion in time remains an open question. The objective of this study was to assess the predictability of distal lower-limb motion using US image features of rectus femoris (RF) muscle during non-weight-bearing knee flexion/extension. A series of time shifts was introduced between the US features and the joint position in 67 ms steps from 0 ms (i.e., estimation, no prediction) up to predicting 467 ms in advance. A US-based algorithm to estimate lower-limb motion was then used to predict the knee joint position in time using the US features after introducing the time shifts. The accuracy of joint motion prediction after each time shift was compared to the accuracy of joint motion estimation. The reliability of the prediction was then assessed using an analysis of variance (ANOVA) test. The motion prediction accuracy was found to be reliable up to 200 ms, where the average root mean square error (RMSE) of prediction across 9 healthy subjects was 0.89 degrees greater than the average RMSE (7.39 degrees) of motion estimation for the same group of subjects. These findings suggest a reliable prediction of upcoming lower-limb motion is feasible using the US features of skeletal muscle up to a certain point. A reliable prediction may provide lower-limb assistive device control systems with a time-window for processing and control planning, and actuation hence improving the volitional control behaviors of lower-limb assistive devices.
Collapse
|
8
|
Jahanandish MH, Rabe KG, Fey NP, Hoyt K. Gait Phase Identification During Level, Incline and Decline Ambulation Tasks Using Portable Sonomyographic Sensing. IEEE Int Conf Rehabil Robot 2019; 2019:988-993. [PMID: 31374758 DOI: 10.1109/icorr.2019.8779534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical viability of powered lower-limb assistive devices requires reliable and intuitive control strategies. Stance and swing are the main phases of the gait cycle across different locomotion tasks. Hence, a reliable method to accurately identify these phases can decrease sensing complexity and assist in enabling high-level control of assistive devices. Ultrasound (US) imaging has recently been introduced as a new sensing modality that may provide a solution for intuitive device control. US images of the rectus femoris and vastus intermedius muscles were collected in humans during level, incline, and decline ambulation tasks. Five low-level static (i.e. time-independent) features of US images were measured with respect to a reference image, including correlation coefficient, sum of absolute differences, structural similarity index, sum of squared differences, and image echogenicity. Time-derivatives of the static features were also calculated as temporal features. Support vector machine classifiers were trained using these static features to identify the gait phase both dependent and independent of the ambulation tasks. The results indicate an accuracy of 88.3% in identifying the gait phases for task-independent classifiers when trained using only the static features. Performance of the classifiers improved significantly to 92.8% after using the temporal features (p $\lt0.01)$. The algorithm was efficient and the average processing speed was faster than 100 Hz. This study is the first demonstration on use of US imaging to provide continuous estimates of ambulation phase, and on multiple surfaces. These findings suggest task-independent approaches may reliably identify the main phases of the gait cycle. Advancements in this area of study may provide simpler intuitive strategies for high-level assistive device control and increase their clinical relevance.
Collapse
|
9
|
Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased Corticomuscular Coherence and Brain Activation Immediately After Short-Term Neuromuscular Electrical Stimulation. Front Neurol 2018; 9:886. [PMID: 30405518 PMCID: PMC6206169 DOI: 10.3389/fneur.2018.00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) is commonly used in motor rehabilitation for stroke patients. It has been verified that NMES can improve muscle strength and activate the brain, but the studies on how NMES affects the corticomuscular connection are limited. Some studies found an increased corticomuscular coherence (CMC) after a long-term NMES. However, it is still unknown about CMC during NMES, as relatively pure EMG is very difficult to obtain with the contamination of NMES current pulses. In order to approach the condition during NMES, we designed an experiment with short-term NMES and immediately captured data within 100 s. The repetition of wrist flexion was used to realize static muscle contractions for CMC calculation and dynamic contractions for event-related desynchronization (ERD). The result of 13 healthy participants showed that maximal values (p = 0.0020) and areas (p = 0.0098) of CMC and beta ERD were significantly increased immediately after NMES. It was concluded that a short-term NMES can still reinforce corticomuscular functional connection and brain activation related to motor task. This study verified the immediate strengthen of corticomuscular changes after NMES, which was expected to be the basis of long-term neural plasticity induced by NMES.
Collapse
Affiliation(s)
- Rui Xu
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yaoyao Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kun Wang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufeng Zhang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chuan He
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|