1
|
Pereira FES, Jagatheesaperumal SK, Benjamin SR, Filho PCDN, Duarte FT, de Albuquerque VHC. Advancements in non-invasive microwave brain stimulation: A comprehensive survey. Phys Life Rev 2024; 48:132-161. [PMID: 38219370 DOI: 10.1016/j.plrev.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.
Collapse
Affiliation(s)
| | - Senthil Kumar Jagatheesaperumal
- Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Ceará, Brazil; Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - Stephen Rathinaraj Benjamin
- Department of Pharmacology and Pharmacy, Laboratory of Behavioral Neuroscience, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-160, Ceará, Brazil
| | | | | | | |
Collapse
|
2
|
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, Zhao Q. Implantable Flexible Sensors for Health Monitoring. Adv Healthc Mater 2024; 13:e2302460. [PMID: 37816513 DOI: 10.1002/adhm.202302460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.
Collapse
Affiliation(s)
- Aoxi Yu
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Congkai Chen
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Haixia Cui
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
4
|
Bhaskara S, Sakorikar T, Chatterjee S, Shabari Girishan K, Pandya HJ. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Dehkhoda F, Soltan A, Ponon N, O'Neill A, Jackson A, Degenaar P. A current-mode system to self-measure temperature on implantable optoelectronics. Biomed Eng Online 2019; 18:117. [PMID: 31805942 PMCID: PMC6896326 DOI: 10.1186/s12938-019-0736-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure the temperature change at the implant's surface, and thus, monitor temperature rises. The main challenge in this approach is to bias the LED with a robust voltage since the reverse current is strongly and nonlinearly sensitive to the bias voltage. METHODS To overcome this challenge, we have developed an area-efficient LED-based temperature sensor using the LED as its own sensor and a CMOS electronic circuit interface to ensure stable bias and current measurement. The circuit utilizes a second-generation current conveyor (CCII) configuration to achieve this and has been implemented in 0.35 μm CMOS technology. RESULTS The developed circuits have been experimentally characterized, and the temperature-sensing functionality has been tested by interfacing different mini-LEDs in saline models of tissue prior to in vivo operation. The experimental results show the functionality of the CMOS electronics and the efficiency of the CCII-based technique with an operational frequency up to 130 kHz in achieving a resolution of 0.2 °C for the surface temperature up to + 45 °C. CONCLUSIONS We developed a robust CMOS current-mode sensor interface which has a reliable CCII to accurately convey the LED's reverse current. It is low power and robust against power supply ripple and transistor mismatch which makes it reliable for sensor interface. The achieved results from the circuit characterization and in vivo experiments show the feasibility of the whole sensor interface in monitoring the tissue surface temperature in optogenetics.
Collapse
Affiliation(s)
- Fahimeh Dehkhoda
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Ahmed Soltan
- NISC Group, Nile University, Al Sheikh Zayed, Giza, Egypt
| | - Nikhil Ponon
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | - Anthony O'Neill
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| | - Andrew Jackson
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - Patrick Degenaar
- School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
6
|
Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate. PLoS One 2019; 14:e0220258. [PMID: 31339963 PMCID: PMC6655783 DOI: 10.1371/journal.pone.0220258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Implantable neural probes are widely used to record and stimulate neural activities. These probes should be stiff enough for insertion. However, it should also be flexible to minimize tissue damage after insertion. Therefore, having dynamic control of the neural probe shank flexibility will be useful. For the first time, we have successfully fabricated flexible neural probes with embedded microfluidic channels for dynamic control of neural probe stiffness by controlling fluidic pressure in the channels. The present hybrid neural probes consisted of polydimethylsiloxane (PDMS) and polyimide (PI) layers could provide the required stiffness for insertion and flexibility during operation. The PDMS channels were fabricated by reversal imprint using a silicon mold and bonded to a PI layer to form the embedded channels in the neural probe. The probe shape was patterned using an oxygen plasma generated by an inductively coupled plasma etching system. The critical buckling force of PDMS/PI neural probes could be tuned from 0.25-1.25 mN depending on the applied fluidic pressure in the microchannels and these probes were successfully inserted into a 0.6% agarose gel that mimicked the stiffness of the brain tissue. Polymer-based neural probes are typically more flexible than conventional metal wire-based probes, and they could potentially provide less tissue damage after implantation.
Collapse
|
7
|
Wirdatmadja S, Johari P, Desai A, Bae Y, Stachowiak EK, Stachowiak MK, Jornet JM, Balasubramaniam S. Analysis of Light Propagation on Physiological Properties of Neurons for Nanoscale Optogenetics. IEEE Trans Neural Syst Rehabil Eng 2019; 27:108-117. [PMID: 30624220 DOI: 10.1109/tnsre.2019.2891271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Miniaturization of implantable devices is an important challenge for future brain-computer interface applications, and in particular for achieving precise neuron stimulation. For stimulation that utilizes light, i.e., optogenetics, the light propagation behavior and interaction at the nanoscale with elements within the neuron is an important factor that needs to be considered when designing the device. This paper analyzes the effect of light behavior for a single neuron stimulation and focuses on the impact from different cell shapes. Based on the Mie scattering theory, the paper analyzes how the shape of the soma and the nucleus contributes to the focusing effect resulting in an intensity increase, which ensures that neurons can assist in transferring light through the tissue toward the target cells. At the same time, this intensity increase can in turn also stimulate neighboring cells leading to interference within the neural circuits. This paper also analyzes the ideal placements of the device with respect to the angle and position within the cortex that can enable axonal biophoton communications, which can contain light within the cell to avoid the interference.
Collapse
|
8
|
Goncalves SB, Palha JM, Fernandes HC, Souto MR, Pimenta S, Dong T, Yang Z, Ribeiro JF, Correia JH. LED Optrode with Integrated Temperature Sensing for Optogenetics. MICROMACHINES 2018; 9:E473. [PMID: 30424406 PMCID: PMC6187356 DOI: 10.3390/mi9090473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 12/02/2022]
Abstract
In optogenetic studies, the brain is exposed to high-power light sources and inadequate power density or exposure time can cause cell damage from overheating (typically temperature increasing of 2 ∘ C). In order to overcome overheating issues in optogenetics, this paper presents a neural tool capable of assessing tissue temperature over time, combined with the capability of electrical recording and optical stimulation. A silicon-based 8 mm long probe was manufactured to reach deep neural structures. The final proof-of-concept device comprises a double-sided function: on one side, an optrode with LED-based stimulation and platinum (Pt) recording points; and, on the opposite side, a Pt-based thin-film thermoresistance (RTD) for temperature assessing in the photostimulation site surroundings. Pt thin-films for tissue interface were chosen due to its biocompatibility and thermal linearity. A single-shaft probe is demonstrated for integration in a 3D probe array. A 3D probe array will reduce the distance between the thermal sensor and the heating source. Results show good recording and optical features, with average impedance magnitude of 371 k Ω , at 1 kHz, and optical power of 1.2 mW·mm - 2 (at 470 nm), respectively. The manufactured RTD showed resolution of 0.2 ∘ C at 37 ∘ C (normal body temperature). Overall, the results show a device capable of meeting the requirements of a neural interface for recording/stimulating of neural activity and monitoring temperature profile of the photostimulation site surroundings, which suggests a promising tool for neuroscience research filed.
Collapse
Affiliation(s)
- S Beatriz Goncalves
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José M Palha
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Helena C Fernandes
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Márcio R Souto
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Sara Pimenta
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - Tao Dong
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- Institute for Microsystems-IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway (USN), Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
| | - João F Ribeiro
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| | - José H Correia
- Institute of Applied Micro-Nano Science and Technology-IAMNST, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Chongqing Engineering Laboratory for Detection, Control and Integrated System, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes 4800-058, Portugal.
| |
Collapse
|
9
|
Yang F, Yang N, Huo X, Xu S. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS 2018; 12:041501. [PMID: 30867860 PMCID: PMC6404956 DOI: 10.1063/1.5037421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Nana Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoye Huo
- Faculty of Mechanical Engineering, Micro-and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|