1
|
Celik Y, Wall C, Moore J, Godfrey A. Better Understanding Rehabilitation of Motor Symptoms: Insights from the Use of Wearables. Pragmat Obs Res 2025; 16:67-93. [PMID: 40125472 PMCID: PMC11930022 DOI: 10.2147/por.s396198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Movement disorders present a substantial challenge by adversely affecting daily routines and overall well-being through a diverse spectrum of motor symptoms. Traditionally, motor symptoms have been evaluated through manual observational methods and patient-reported outcomes. While those approaches are valuable, they are limited by their subjectivity. In contrast, wearable technologies (wearables) provide objective assessments while actively supporting rehabilitation through continuous tracking, real-time feedback, and personalized physical therapy-based interventions. The aim of this literature review is to examine current research on the use of wearables in the rehabilitation of motor symptoms, focusing on their features, applications, and impact on improving motor function. By exploring research protocols, metrics, and study findings, this review aims to provide a comprehensive overview of how wearables are being used to support and optimize rehabilitation outcomes. To achieve that aim, a systematic search of the literature was conducted. Findings reveal that gait disturbance and postural balance are the primary motor symptoms extensively studied with tremor and freezing of gait (FoG) also receiving attention. Wearable sensing ranges from bespoke inertial and/or electromyography to commercial units such as personal devices (ie, smartwatch). Interactive (virtual reality, VR and augmented reality, AR) and immersive technologies (headphones), along with wearable robotic systems (exoskeletons), have proven to be effective in improving motor skills. Auditory cueing (via smartwatches or headphones), aids gait training with rhythmic feedback, while visual cues (via VR and AR glasses) enhance balance exercises through real-time feedback. The development of treatment protocols that incorporate personalized cues via wearables could enhance adherence and engagement to potentially lead to long-term improvements. However, evidence on the sustained effectiveness of wearable-based interventions remains limited.
Collapse
Affiliation(s)
- Yunus Celik
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Conor Wall
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Jason Moore
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
2
|
Ersoy T, Kaya P, Hocaoglu E, Unal R. I-BaR: integrated balance rehabilitation framework. Front Neurorobot 2024; 18:1401931. [PMID: 39021504 PMCID: PMC11252086 DOI: 10.3389/fnbot.2024.1401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Neurological diseases are observed in approximately 1 billion people worldwide. A further increase is foreseen at the global level as a result of population growth and aging. Individuals with neurological disorders often experience cognitive, motor, sensory, and lower extremity dysfunctions. Thus, the possibility of falling and balance problems arise due to the postural control deficiencies that occur as a result of the deterioration in the integration of multi-sensory information. We propose a novel rehabilitation framework, Integrated Balance Rehabilitation (I-BaR), to improve the effectiveness of the rehabilitation with objective assessment, individualized therapy, convenience with different disability levels and adoption of assist-as-needed paradigm and, with integrated rehabilitation process as whole, that is, ankle-foot preparation, balance, and stepping phases, respectively. Integrated Balance Rehabilitation allows patients to improve their balance ability by providing multi-modal feedback: visual via utilization of virtual reality; vestibular via anteroposterior and mediolateral perturbations with the robotic platform; proprioceptive via haptic feedback.
Collapse
Affiliation(s)
- Tugce Ersoy
- Department of Mechanical Engineering, Human-Centered Design Laboratory, Ozyegin University, Istanbul, Türkiye
| | - Pınar Kaya
- Department of Physiotherapy and Rehabilitation, Istanbul Medipol University, Istanbul, Türkiye
| | - Elif Hocaoglu
- Department of Electrical and Electronics Engineering, Living Robotics Laboratory, Istanbul Medipol University, Istanbul, Türkiye
- SABITA (Research Institute for Health Sciences and Technologies), Istanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Unal
- Department of Mechanical Engineering, Human-Centered Design Laboratory, Ozyegin University, Istanbul, Türkiye
| |
Collapse
|
3
|
Imbesi S, Corzani M. Multisensory Cues for Gait Rehabilitation with Smart Glasses: Methodology, Design, and Results of a Preliminary Pilot. SENSORS (BASEL, SWITZERLAND) 2023; 23:874. [PMID: 36679671 PMCID: PMC9867182 DOI: 10.3390/s23020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Recent advances in mobile technology have shown that augmented unisensory feedback can be leveraged to improve gait using wearable systems, but less is known about the possible benefits and usability of multisensory (i.e., multimodal) feedback. This paper introduces the preliminary results of an innovative research project aiming to develop an mHealth system including Android smart glasses, and providing multisensory cues for gait rehabilitation of people affected by Parkinson's disease in and out of the medical context. In particular, the paper describes a preliminary pilot focusing on the design of visual, auditory, and haptic cues, and testing the design methodologies to be used in further developments of the project. Considered research questions were: Which kinds of images, sounds, and vibrations mostly influence gait speed, stride length, and cadence? Which are the ones stressing the user the least? Which ones induce the most immediate reaction? Thus, in this starting part of the research project, different typologies of sensory cues were designed, tested, and evaluated considering quantitative and qualitative parameters to properly answer the research questions.
Collapse
Affiliation(s)
- Silvia Imbesi
- Department of Architecture, University of Ferrara, 44121 Ferrara, Italy
| | - Mattia Corzani
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Lee H, Eizad A, Park J, Kim Y, Hwang S, Oh MK, Yoon J. Development of a Novel 2-Dimensional Neck Haptic Device for Gait Balance Training. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
EEG-explained cortical correlates of transfemoral amputees during balancing with vibrotactile feedback: A pilot study. Med Eng Phys 2022; 101:103772. [DOI: 10.1016/j.medengphy.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
6
|
Hessfeld V, Schulleri KH, Lee D. Assessment of Balance Instability by Wearable Sensor Systems During Postural Transitions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7455-7459. [PMID: 34892273 DOI: 10.1109/embc46164.2021.9631072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several studies have demonstrated beneficial effects of real-time biofeedback for improving postural control. However, the application for daily activities, which also include postural transitions, is still limited. One crucial aspect is the time point of providing feedback, and thus its reliability. This might depend on the sensor system used, but also on how the threshold is defined. This study investigates which wearable sensor system and what kind of threshold is more reliable in a situation of a postural transition.To this end, we compared three sensor systems regarding their accuracy in timing in a stable and unstable postural transition in 16 healthy young adults: a multiple Inertial Measurement Unit system (IMU), a pressure Insoles System (IS), and a combination of both systems (COMB). Further, we contrasted two threshold parameters for each system: a Quiet Standing-based threshold (QSth) and a Limits of Stability-based threshold (LoSth).Two-way repeated measures ANOVAs and Wilcoxon tests (α = 0.05) indicated highest accuracy in the COMB LoSth, though with small differences to the IS LoSth. The LoSth showed more accurate timing than the QSth, especially in medio-lateral direction for IS and COMB.Consequently, for providing a reliable timing for a potential biofeedback applied by a wearable device in everyday life situations applications should focus on pressure insoles and a functional stability threshold, such as the LoS-based threshold.
Collapse
|
7
|
Escamilla-Nunez R, Sivasambu H, Andrysek J. Exploration of Vibrotactile Biofeedback Strategies to Induce Stance Time Asymmetries. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2021; 5:36744. [PMID: 37614481 PMCID: PMC10443477 DOI: 10.33137/cpoj.v5i1.36744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gait symmetry is the degree of equality of biomechanical parameters between limbs within a gait cycle. Human gait is highly symmetrical; however, in the presence of pathology, gait often lacks symmetry. Biofeedback (BFB) systems have demonstrated the potential to reduce gait asymmetry, improve gait function, and benefit overall long-term musculoskeletal health. OBJECTIVES The aim of this study was to develop a BFB system and evaluate three unique BFB strategies, including bidirectional control - constant vibration (BC), bidirectional control - variable vibration (BV), and unidirectional control - variable vibration (UV) relevant to gait symmetry. The assessed feedback strategies were a combination of vibration frequency/amplitude levels, vibration thresholds, and vibrotactile stimuli from one and two vibrating motors (tactors). Learning effect and short-term retention were also assessed. METHODOLOGY Testing was performed using a custom BFB system that induces stance time asymmetries to modulate temporal gait symmetry. The BFB system continuously monitors specific gait events (heel-strike and toe-off) and calculates the symmetry ratio, based on the stance time of both limbs to provide real-time biomechanical information via the vibrating motors. Overall walking performance of ten (n=10) able-bodied individuals (age 24.8 ± 4.4 years) was assessed via metrics of symmetry ratio, symmetry ratio error, walking speed, and motor's vibration percentages. FINDINGS All participants utilized BFB somatosensory information to modulate their symmetry ratio. UV feedback produced a greater change in symmetry ratio, and it came closer to the targeted symmetry ratio. Learning or short-term retention effects were minimal. Walking speeds were reduced with feedback compared to no feedback; however, UV walking speeds were significantly faster compared to BV and BC. CONCLUSION The outcomes of this study provide new insights into the development and implementation of feedback strategies for gait retraining BFB systems that may ultimately benefit individuals with pathological gait. Future work should assess longer-term use and long-term learning and retention effects of BFB systems in the populations of interest.
Collapse
Affiliation(s)
- R Escamilla-Nunez
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - H Sivasambu
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| |
Collapse
|
8
|
Vibrotactile biofeedback devices in Parkinson's disease: a narrative review. Med Biol Eng Comput 2021; 59:1185-1199. [PMID: 33969461 DOI: 10.1007/s11517-021-02365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is often associated with a vast list of gait-associated disabilities, for which there is still a limited pharmacological/surgical treatment efficacy. Therefore, alternative approaches have emerged as vibrotactile biofeedback systems (VBS). This review aims to focus on the technologies supporting VBS and identify their effects on improving gait-associated disabilities by verifying how VBS were applied and validated with end-users. It is expected to furnish guidance to researchers looking to enhance the effectiveness of future vibrotactile cueing systems. The use of vibrotactile cues has proved to be relevant and attractive, as positive results have been obtained in patients' gait performance, suitability in any environment, and easy adherence. There seems to be a preference in developing VBS to mitigate freezing of gait, to improve balance, to overcome the risk of fall, and a prevalent use to apply miniaturized wearable actuators and sensors. Most studies implemented a biofeedback loop able to provide rescue strategies during or after the detection of a gait-associated disability. However, there is a need of more clinical evidence and inclusion of experimental sessions to evaluate if the biofeedback was effectively integrated into the patients' motor system.
Collapse
|
9
|
De Angelis S, Princi AA, Dal Farra F, Morone G, Caltagirone C, Tramontano M. Vibrotactile-Based Rehabilitation on Balance and Gait in Patients with Neurological Diseases: A Systematic Review and Metanalysis. Brain Sci 2021; 11:518. [PMID: 33921655 PMCID: PMC8072538 DOI: 10.3390/brainsci11040518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023] Open
Abstract
Postural instability and fear of falling represent two major causes of decreased mobility and quality of life in cerebrovascular and neurologic diseases. In recent years, rehabilitation strategies were carried out considering a combined sensorimotor intervention and an active involvement of the patients during the rehabilitation sessions. Accordingly, new technological devices and paradigms have been developed to increase the effectiveness of rehabilitation by integrating multisensory information and augmented feedback promoting the involvement of the cognitive paradigm in neurorehabilitation. In this context, the vibrotactile feedback (VF) could represent a peripheral therapeutic input, in order to provide spatial proprioceptive information to guide the patient during task-oriented exercises. The present systematic review and metanalysis aimed to explore the effectiveness of the VF on balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. A total of 18 studies met the inclusion criteria and were included. Due to the lack of high-quality studies and heterogeneity of treatments protocols, clinical practice recommendations on the efficacy of VF cannot be made. Results show that VF-based intervention could be a safe complementary sensory-motor approach for balance and gait rehabilitation in patients with neurological and cerebrovascular diseases. More high-quality randomized controlled trials are needed.
Collapse
Affiliation(s)
- Sara De Angelis
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (S.D.A.); (A.A.P.); (G.M.); (C.C.)
| | | | | | - Giovanni Morone
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (S.D.A.); (A.A.P.); (G.M.); (C.C.)
| | - Carlo Caltagirone
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (S.D.A.); (A.A.P.); (G.M.); (C.C.)
| | - Marco Tramontano
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (S.D.A.); (A.A.P.); (G.M.); (C.C.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00185 Rome, Italy
| |
Collapse
|
10
|
Handelzalts S, Ballardini G, Avraham C, Pagano M, Casadio M, Nisky I. Integrating Tactile Feedback Technologies Into Home-Based Telerehabilitation: Opportunities and Challenges in Light of COVID-19 Pandemic. Front Neurorobot 2021; 15:617636. [PMID: 33679364 PMCID: PMC7925397 DOI: 10.3389/fnbot.2021.617636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for advancing the development and implementation of novel means for home-based telerehabilitation in order to enable remote assessment and training for individuals with disabling conditions in need of therapy. While somatosensory input is essential for motor function, to date, most telerehabilitation therapies and technologies focus on assessing and training motor impairments, while the somatosensorial aspect is largely neglected. The integration of tactile devices into home-based rehabilitation practice has the potential to enhance the recovery of sensorimotor impairments and to promote functional gains through practice in an enriched environment with augmented tactile feedback and haptic interactions. In the current review, we outline the clinical approaches for stimulating somatosensation in home-based telerehabilitation and review the existing technologies for conveying mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations). We focus on tactile feedback technologies that can be integrated into home-based practice due to their relatively low cost, compact size, and lightweight. The advantages and opportunities, as well as the long-term challenges and gaps with regards to implementing these technologies into home-based telerehabilitation, are discussed.
Collapse
Affiliation(s)
- Shirley Handelzalts
- Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Mattia Pagano
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- S.C.I.L Joint Lab, Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), Santa Corona Hospital, Pietra Ligure, Italy
| | - Ilana Nisky
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
11
|
An J, Kim J, Lai EC, Lee BC. Effects of a Smartphone-Based Wearable Telerehabilitation System for In-Home Dynamic Weight-Shifting Balance Exercises by Individuals with Parkinson's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5678-5681. [PMID: 33019265 DOI: 10.1109/embc44109.2020.9175967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper describes the effects of a smartphone-based wearable telerehabilitation system (called Smarter Balance System, SBS) intended for in-home dynamic weight-shifting balance exercises (WSBEs) by individuals with Parkinson's disease (PD). Two individuals with idiopathic PD performed in-home dynamic WSBEs in anterior-posterior (A/P) and medial-lateral (M/L) directions, using the SBS 3 days per week for 6 weeks. Exercise performance was quantified by cross-correlation (XCORR) and position error (PE) analyses. Balance and gait performance and level of fear of falling were assessed by limit of stability (LOS), Sensory Organization Test (SOT), Falls Efficacy Scale (FES), Activities-specific Balance Confidence (ABC), and Dynamic Gait Index (DGI) at the pre-(beginning of week 1), post-(end of week 6), and retention-(1 month after week 6) assessments. Regression analyses found that exponential trends of the XCORR and PE described exercise performance more effectively than linear trends. Range of LOS in both A/P and M/L directions improved at the post-assessment compared to the pre-assessment, and was retained at the retention assessment. The preliminary findings emphasize the advantages of wearable balance telerehabilitation technologies when performing in-home balance rehabilitation exercises.
Collapse
|
12
|
Escamilla-Nunez R, Michelini A, Andrysek J. Biofeedback Systems for Gait Rehabilitation of Individuals with Lower-Limb Amputation: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1628. [PMID: 32183338 PMCID: PMC7146745 DOI: 10.3390/s20061628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Individuals with lower-limb amputation often have gait deficits and diminished mobility function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research on biofeedback has steadily increased in recent decades, representing the growing interest toward this topic. This systematic review highlights the methodological designs, main technical and clinical challenges, and evidence relating to the effectiveness of biofeedback systems for gait rehabilitation. This review provides insights for developing an effective, robust, and user-friendly wearable biofeedback system. The literature search was conducted on six databases and 31 full-text articles were included in this review. Most studies found biofeedback to be effective in improving gait. Biofeedback was most commonly concurrently provided and related to limb loading and symmetry ratios for stance or step time. Visual feedback was the most used modality, followed by auditory and haptic. Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user. Biofeedback appears to be most effective during the early stages of rehabilitation but presents some usability challenges when applied to the elderly. More research is needed on younger populations and higher amputation levels, understanding retention as well as the relationship between training intensity and performance.
Collapse
Affiliation(s)
- Rafael Escamilla-Nunez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Alexandria Michelini
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Jan Andrysek
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4Y 1R5, Canada; (R.E.-N.); (A.M.)
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| |
Collapse
|
13
|
Hasegawa N, Ishikawa K, Sato Y, Nakayama Y, Asaka T. Short-term effects of postural control by standing on a tilting board in patients with Parkinson’s disease. Physiother Theory Pract 2019; 37:1306-1312. [DOI: 10.1080/09593985.2019.1695302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Naoya Hasegawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Rehabilitation, Sapporo Yamanoue Hospital, Sapporo, Hokkaido, Japan
| | - Keita Ishikawa
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuki Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhide Nakayama
- Department of Rehabilitation, The Jikei University Hospital, Tokyo, Japan
| | - Tadayoshi Asaka
- Department of Rehabilitatiton Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Afzal MR, Lee H, Eizad A, Lee CH, Oh MK, Yoon J. Effects of Vibrotactile Biofeedback Coding Schemes on Gait Symmetry Training of Individuals With Stroke. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1617-1625. [PMID: 31247557 DOI: 10.1109/tnsre.2019.2924682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Variations in biofeedback coding schemes for postural control, in recent research, have shown significant differences in performance outcomes due to variations in coding schemes. However, the application of vibrotactile biofeedback coding schemes to gait symmetry training is not well explored. In this paper, we devised various vibrotactile biofeedback modes and identified their efficacy during gait symmetry training of individuals suffering from hemiparesis due to stroke. These modes are composed of variations in vibration type (on-time or intensity), and relation type (proportional or inversely-proportional) with the error in symmetry ratio. Eight individuals with stroke participated in walking trials. From dependent t-tests on the collected data, we found improved achievement of temporal gait symmetry while utilizing all the provided biofeedback modes compared to no biofeedback (P < 0.001). Furthermore, two-way repeated measures ANOVA revealed statistically significant difference in symmetry ratio for main effect of vibration type (P-value = 0.016, partial eta squared = 0.585). The participants performed better with modes of biofeedback with varying vibration on-times. Furthermore, participants showed better performance when the biofeedback varied proportionally with the error. These findings suggest that biofeedback coding schemes may have a significant effect on the performance of gait training.
Collapse
|
15
|
Rueangsirarak W, Zhang J, Aslam N, Ho ESL, Shum HPH. Automatic Musculoskeletal and Neurological Disorder Diagnosis With Relative Joint Displacement From Human Gait. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2387-2396. [PMID: 30442608 DOI: 10.1109/tnsre.2018.2880871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Musculoskeletal and neurological disorders are common devastating companions of ageing, leading to a reduction in quality of life and increased mortality. Gait analysis is a popular method for diagnosing these disorders. However, manually analyzing the motion data is a labor-intensive task, and the quality of the results depends on the experience of the doctors. In this paper, we propose an automatic framework for classifying musculoskeletal and neurological disorders among older people based on 3D motion data. We also propose two new features to capture the relationship between joints across frames, known as 3D Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement (6DSymRJDP), such that the relative movement between joints can be analyzed. To optimize the classification performance, we adapt feature selection methods to choose an optimal feature set from the raw feature input. Experimental results show that we achieve a classification accuracy of 84.29% using the proposed relative joint features, outperforming existing features that focus on the movement of individual joints. Considering the limited open motion database for gait analysis focusing on such disorders, we construct a comprehensive, openly accessible 3D full-body motion database from 45 subjects.
Collapse
|
16
|
Evaluating the Effects of Kinesthetic Biofeedback Delivered Using Reaction Wheels on Standing Balance. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:7892020. [PMID: 29991995 PMCID: PMC6016170 DOI: 10.1155/2018/7892020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Aging, injury, or ailments can contribute to impaired balance control and increase the risk of falling. Provision of light touch augments the sense of balance and can thus reduce the amount of body sway. In this study, a wearable reaction wheel-based system is used to deliver light touch-based balance biofeedback on the subject's back. The system can sense torso tilt and, using reaction wheels, generates light touch. A group of 7 healthy young individuals performed balance tasks under 12 trial combinations based on two conditions each of standing stance and surface types and three of biofeedback device status. Torso tilt data, collected from a waist-mounted smartphone during all the trials, were analyzed to determine the efficacy of the system. Provision of biofeedback by the device significantly reduced RMS of mediolateral (ML) trunk tilt (p < 0.05) and ML trunk acceleration (p < 0.05). Repeated measures ANOVA revealed significant interaction between stance and surface on reduction in RMS of ML trunk tilt, AP trunk tilt, ML trunk acceleration, and AP trunk acceleration. The device shows promise for further applications such as virtual reality interaction and gait rehabilitation.
Collapse
|
17
|
Fung A, Lai EC, Lee BC. Usability and Validation of the Smarter Balance System: An Unsupervised Dynamic Balance Exercises System for Individuals With Parkinson’s Disease. IEEE Trans Neural Syst Rehabil Eng 2018; 26:798-806. [DOI: 10.1109/tnsre.2018.2808139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|