1
|
Zhang L, Xu C, Chen L, Liu Y, Xiao N, Wu X, Chen Y, Hou W. Abnormal interlimb coordination of motor developmental delay during infant crawling based on kinematic synergy analysis. Biomed Eng Online 2024; 23:16. [PMID: 38326806 PMCID: PMC10851483 DOI: 10.1186/s12938-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Previous studies have reported that abnormal interlimb coordination is a typical characteristic of motor developmental delay (MDD) during human movement, which can be visually manifested as abnormal motor postures. Clinically, the scale assessments are usually used to evaluate interlimb coordination, but they rely heavily on the subjective judgements of therapists and lack quantitative analysis. In addition, although abnormal interlimb coordination of MDD have been studied, it is still unclear how this abnormality is manifested in physiology-related kinematic features. OBJECTIVES This study aimed to evaluate how abnormal interlimb coordination of MDD during infant crawling was manifested in the stability of joints and limbs, activation levels of synergies and intrasubject consistency from the kinematic synergies of tangential velocities of joints perspective. METHODS Tangential velocities of bilateral shoulder, elbow, wrist, hip, knee and ankle over time were computed from recorded three-dimensional joint trajectories in 40 infants with MDD [16 infants at risk of developmental delay, 11 infants at high risk of developmental delay, 13 infants with confirmed developmental delay (CDD group)] and 20 typically developing infants during hands-and-knees crawling. Kinematic synergies and corresponding activation coefficients were derived from those joint velocities using the non-negative matrix factorization algorithm. The variability accounted for yielded by those synergies and activation coefficients, and the synergy weightings in those synergies were used to measure the stability of joints and limbs. To quantify the activation levels of those synergies, the full width at half maximum and center of activity of activation coefficients were calculated. In addition, the intrasubject consistency was measured by the cosine similarity of those synergies and activation coefficients. RESULTS Interlimb coordination patterns during infant crawling were the combinations of four types of single-limb movements, which represent the dominance of each of the four limbs. MDD mainly reduced the stability of joints and limbs, and induced the abnormal activation levels of those synergies. Meanwhile, MDD generally reduced the intrasubject consistency, especially in CDD group. CONCLUSIONS These features have the potential for quantitatively evaluating abnormal interlimb coordination in assisting the clinical diagnosis and motor rehabilitation of MDD.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Chong Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| | - Yuan Liu
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Nong Xiao
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China.
| | - Yuxia Chen
- Department of Rehabilitation Center, Children's Hospital, Chongqing Medical University, Chongqing, 400014, China.
| | - Wensheng Hou
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400044, China
| |
Collapse
|
2
|
Xiong Q, Wan J, Liu Y, Wu X, Jiang S, Xiao N, Hou W. Reduced corticospinal drive to antagonist muscles of upper and lower limbs during hands-and-knees crawling in infants with cerebral palsy: Evidence from intermuscular EMG-EMG coherence. Behav Brain Res 2024; 457:114718. [PMID: 37858871 DOI: 10.1016/j.bbr.2023.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND There is growing interest in understanding the central control of hands-and-knees crawling, especially as a significant motor developmental milestone for early assessment of motor dysfunction in infants with cerebral palsy (CP) who have not yet acquired walking ability. In particular, CP is known to be associated with walking dysfunctions caused by early damage and incomplete maturation of the corticospinal tract. However, the extent of damage to the corticospinal connections during crawling in infants with CP has not been fully clarified. Therefore, this study aimed to investigate the disparities in intermuscular EMG-EMG coherence, which serve as indicators of corticospinal drives to antagonist muscles in the upper and lower limbs during crawling, between infants with and without CP. METHODS This study involved 15 infants diagnosed with CP and 20 typically developing (TD) infants. Surface EMG recordings were obtained from two pairs of antagonist muscles in the upper limbs (triceps brachii (TB) and biceps brachii (BB)) and lower limbs (quadriceps femoris (QF) and hamstrings (HS)), while the infants performed hands-and-knees crawling at their self-selected velocity. Intermuscular EMG-EMG coherence was computed in two frequency bands, the beta band (15-30 Hz) and gamma band (30-60 Hz), which indicate corticospinal drive. Additionally, spatiotemporal parameters, including crawling velocity, cadence, duration, and the percentage of stance phase time, were calculated for comparison. Spearman rank correlations were conducted to assess the relationship between EMG-EMG coherence and crawling spatiotemporal parameters. RESULTS Infants with CP exhibited significantly reduced crawling velocity, decreased cadence, longer cycle duration, and a higher percentage of stance phase time compared to TD infants. Furthermore, CP infants demonstrated decreased coherence in the beta and gamma frequency bands (indicators of corticospinal drive) in both upper and lower limb muscles. Regarding limb-related differences in the beta and gamma coherence, significant disparities were found between upper and lower limb muscles in TD infants (p < 0.05), but not in infants with CP (p > 0.05). Additionally, significant correlations between coherence metrics and crawling spatiotemporal parameters were identified in the TD group (p < 0.05), while such correlations were not evident in the CP group. CONCLUSIONS Our findings suggest that the corticospinal drive may functionally influence the central control of antagonist muscles in the limbs during typical infant crawling. This functional role could be impaired by neurological conditions such as cerebral palsy. The neurophysiological markers of corticospinal drive, specifically intermuscular EMG-EMG coherence during crawling in infants with cerebral palsy, could potentially serve as a tool to assess developmental response to therapy.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China; Department of Bioengineering, Chongqing University, Chongqing, China.
| | - Jinliang Wan
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Xiong Q, Liu Y, Mo J, Chen Y, Zhang L, Xia Z, Yi C, Jiang S, Xiao N. Gait asymmetry in children with Duchenne muscular dystrophy: evaluated through kinematic synergies and muscle synergies of lower limbs. Biomed Eng Online 2023; 22:75. [PMID: 37525241 PMCID: PMC10388506 DOI: 10.1186/s12938-023-01134-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Gait is a complex, whole-body movement that requires the coordinated action of multiple joints and muscles of our musculoskeletal system. In the context of Duchenne muscular dystrophy (DMD), a disease characterized by progressive muscle weakness and joint contractures, previous studies have generally assumed symmetrical behavior of the lower limbs during gait. However, such a symmetric gait pattern of DMD was controversial. One aspect of this is criticized, because most of these studies have primarily focused on univariate variables, rather than on the coordination of multiple body segments and even less investigate gait symmetry under a motor synergy of view. METHODS We investigated the gait pattern of 20 patients with DMD, compared to 18 typical developing children (TD) through 3D Gait Analysis. Kinematic and muscle synergies were extracted with principal component analysis (PCA) and non-negative matrix factorization (NNMF), respectively. The synergies extracted from the left and right sides were compared with each other to obtain a symmetry value. In addition, bilateral spatiotemporal variables of gait, such as stride length, percentage of stance and swing phase, step length, and percentage of double support phase, were used for calculating the symmetry index (SI) to evaluate gait symmetry as well. RESULTS Compared with the TD group, the DMD group walked with decreased gait velocity (both p < 0.01), stride length (both p < 0.01), and step length (both p < 0.001). No significant difference was found between groups in SI of all spatiotemporal parameters extracted between the left and right lower limbs. In addition, the DMD group exhibited lower kinematic synergy symmetry values compared to the TD group (p < 0.001), while no such significant group difference was observed in symmetry values of muscle synergy. CONCLUSIONS The findings of this study suggest that DMD influences, to some extent, the symmetry of synergistic movement of multiple segments of lower limbs, and thus kinematic synergy appears capable of discriminating gait asymmetry in children with DMD when conventional spatiotemporal parameters are unchanged.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jieyi Mo
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuxia Chen
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lianghong Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Zhongyan Xia
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Qiu Y, Guan Y, Liu S. The analysis of infrared high-speed motion capture system on motion aesthetics of aerobics athletes under biomechanics analysis. PLoS One 2023; 18:e0286313. [PMID: 37228162 DOI: 10.1371/journal.pone.0286313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
This paper uses an infrared high-speed motion capture system based on deep learning to analyze difficult movements, which helps aerobics athletes master difficult movements more accurately. Firstly, changes in joint angle, speed of movement, and ground pressure are used to analyze the impact and role of motion fluency and completion based on a biomechanical perspective. Moreover, based on the existing infrared high-speed motion capture systems, the Restricted Boltzmann Machine (RBM) model is introduced to construct an unsupervised similarity framework model. Next, the motion data is reorganized based on three-dimensional information to adapt to the model's input. Then, the framework performs similar frame matching to obtain a set of candidate frames that can be used as motion graph nodes. After the infrared high-speed motion capture system and inertial sensors are simultaneously applied to subjects, the multi-correlation coefficients (CMC) values of the hip, knee, and ankle angles are 0.94 ± 0.06, 0.98 ± 0.01, and 0.87 ± 0.09, respectively. The two systems show a high degree of correlation in the measurement results, and the knee joint is the most significant correlation. Finally, a motion graph is constructed to control its trajectory and adjust its motion pattern. The infrared high-speed motion capture system optimized for deep learning can extract features from human bone data and capture motion more accurately, helping trainers to fully understand difficult movements.
Collapse
Affiliation(s)
- Yaoyu Qiu
- School of Sport, Shangrao Normal University, Shangrao, China
| | - Yingrong Guan
- School of Sport, Shangrao Normal University, Shangrao, China
| | - Shuang Liu
- College of Physical Education, Jinggangshan University, Ji'an, China
| |
Collapse
|
5
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Higgins OA, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Festa A, Hajdu T, Mateovics‐László O, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Morphologies in-between: The impact of the first steps on the human talus. Anat Rec (Hoboken) 2023; 306:124-142. [PMID: 35656925 PMCID: PMC10083965 DOI: 10.1002/ar.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)IMF, CSI0CBarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Owen A. Higgins
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Ildiko Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
6
|
Xiong Q, Wan J, Jiang S, Liu Y. Age-related differences in gait symmetry obtained from kinematic synergies and muscle synergies of lower limbs during childhood. Biomed Eng Online 2022; 21:61. [PMID: 36058910 PMCID: PMC9442939 DOI: 10.1186/s12938-022-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
The age-related changes of gait symmetry in healthy children concerning individual joint and muscle activation data have previously been widely studied. Extending beyond individual joints or muscles, identifying age-related changes in the coordination of multiple joints or muscles (i.e., muscle synergies and kinematic synergies) could capture more closely the underlying mechanisms responsible for gait symmetry development. To evaluate the effect of age on the symmetry of the coordination of multiple joints or muscles during childhood, we measured gait symmetry by kinematic and EMG data in 39 healthy children from 2 years old to 14 years old, divided into three equal age groups: preschool children (G1; 2.0-5.9 years), children (G2; 6.0-9.9 years), pubertal children (G3; 10.0-13.9 years). Participants walked barefoot at a self-selected walking speed during three-dimensional gait analysis (3DGA). Kinematic synergies and muscle synergies were extracted with principal component analysis (PCA) and non-negative matrix factorization (NNMF), respectively. The synergies extracted from the left and right sides were compared with each other to obtain a symmetry value. Statistical analysis was performed to examine intergroup differences. The results showed that the effect of age was significant on the symmetry values extracted by kinematic synergies, while older children exhibited higher kinematic synergy symmetry values compared to the younger group. However, no significant age-related changes in symmetry values of muscle synergy were observed. It is suggested that kinematic synergy of lower joints can be asymmetric at the onset of independent walking and showed improving symmetry with increasing age, whereas the age-related effect on the symmetry of muscle synergies was not demonstrated. These data provide an age-related framework and normative dataset to distinguish age-related differences from pathology in children with neuromotor disorders.
Collapse
Affiliation(s)
- Qiliang Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China. .,Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China.
| | - Jinliang Wan
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Shaofeng Jiang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China.,Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhang L, Deng CF, Liu Y, Chen L, Xiao N, Zhai SJ, Hou WS, Chen YX, Wu XY. Impacts of Motor Developmental Delay on the Inter-Joint Coordination Using Kinematic Synergies of Joint Angles During Infant Crawling. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1664-1674. [PMID: 35675252 DOI: 10.1109/tnsre.2022.3180929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Motor developmental delay (MDD) usually affects the inter-joint coordination for limb movement. However, the mechanism between the abnormal inter-joint coordination and MDD is still unclear, which poses a challenge for clinical diagnosis and motor rehabilitation of MDD in infant's early life. This study aimed to explore whether the joint activities of limbs during infant crawling are represented with kinematic synergies of joint angles, and evaluate the impacts of MDD on the inter-joint coordination using those synergies. 20 typically developing infants, 16 infants at risk of developmental delay, 11 infants at high risk of developmental delay and 13 infants with confirmed developmental delay were recruited for self-paced crawling on hands and knees. A motion capture system was employed to trace infants' limbs in space, and angles of shoulder, elbow, hip and knee over time were computed. Kinematic synergies were derived from joint angles using principal component analysis. Sample entropy and Spearman's rank correlation coefficients were calculated among those synergies to evaluate the crawling complexity and the symmetry of bilateral limbs, respectively. We found that the first two synergies with different contributions to the crawling movements sufficiently represented the joint angular profiles of limbs. MDD further delayed the development of motor function for lower limbs and mainly increased the crawling complexity of joint flexion/extension to some extent, but did not obviously change the symmetry of bilateral limbs. These results suggest that the time-varying kinematic synergy of joint angles is a potential index for objectively evaluating the abnormal inter-joint coordination affected by MDD.
Collapse
|
8
|
Xiong QL, Wu XY, Liu Y, Zhang CX, Hou WS. Measurement and Analysis of Human Infant Crawling for Rehabilitation: A Narrative Review. Front Neurol 2021; 12:731374. [PMID: 34707557 PMCID: PMC8544808 DOI: 10.3389/fneur.2021.731374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective. Objective and quantitative measures of infant crawling afford the possibilities to identify those infants who might benefit from early intervention, as well as the evaluation of intervention progress. Thus, increasing researchers have explored objective measurements of infant crawling in typical and atypical developing infants. However, there is a lack of comprehensive review on infant-crawling measurement and analysis toward bridging the gap between research crawling analysis and potential clinical applications. In this narrative review, we provide a practical overview of the most relevant measurements in human infant crawling, including acquisition techniques, data processing methods, features extraction, and the potential value in objective assessment of motor function in infancy; meanwhile, the possibilities to develop crawling training as early intervention to promote the locomotor function for infants with locomotor delays are also discussed.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China.,Department of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong X Zhang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Wen S Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Montagnani E, Price C, Nester C, Morrison SC. Dynamic Characteristics of Foot Development: A Narrative Synthesis of Plantar Pressure Data During Infancy and Childhood. Pediatr Phys Ther 2021; 33:275-282. [PMID: 34417424 DOI: 10.1097/pep.0000000000000819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Quantifying plantar pressure throughout childhood enables clinicians to enhance knowledge of typical changes in foot function. This narrative review aims to describe existing research reporting plantar pressure analysis in infants and children developing typically, to advance understanding of foot development. METHODS A narrative approach was used; 263 articles were identified and 13 met inclusion criteria. RESULTS Plantar pressures during walking rapidly change in infancy and childhood. With development, pressures increasingly resemble those in adults with the development of initial heel contact, shift in pressure distribution from medial to lateral foot side, decreasing midfoot pressure magnitude. The literature has a variety of study designs, data collection protocols, and analysis. CONCLUSION This review describes plantar pressure changes occurring as walking develops, emphasizing the typical trajectory of foot function development in infancy and childhood. The present finding describes the complex biomechanical development of foot function in typically developing infancy and childhood.
Collapse
Affiliation(s)
- Eleonora Montagnani
- School of Health Sciences (Ms Montagnani and Dr Morrison), University of Brighton, Eastbourne, United Kingdom; Centre for Health Sciences Research (Drs Price and Nester), University of Salford, Salford, United Kingdom
| | | | | | | |
Collapse
|
10
|
Lavenne-Collot N, Jallot N, Maguet J, Degrez C, Botbol M, Grandgeorge M. Early Motor Skills in Children With Autism Spectrum Disorders Are Marked by Less Frequent Hand and Knees Crawling. Percept Mot Skills 2021; 128:2148-2165. [PMID: 34372738 DOI: 10.1177/00315125211037983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our aim in this study was to affirm or negate (quantitatively) our subjective impression of altered hands and knees crawling (H&K crawling) among children with Autism Spectrum Disorder (ASD). Through parental questionnaires and children's health records, we retrospectively compared early motor skills, including the frequency of H&K crawling in 79 children with Autistic Disorder or Asperger Syndrome versus 100 children with typical development (TD). We found H&K crawling to be significantly less frequent among children with ASD (44.2%) versus children with TD (69%). Children with ASD also showed a decreased frequency of acquiring a seating position without help and a later mean walking age compared to the TD children. These data suggest that early motor development delays may be a useful sign for detecting ASD at early ages.
Collapse
Affiliation(s)
| | - Nelle Jallot
- Service universitaire de psychiatrie infanto-juvénile, CHRU de Brest, Brest, France
| | - Julie Maguet
- Service universitaire de psychiatrie infanto-juvénile, CHRU de Brest, Brest, France
| | - Céline Degrez
- Service universitaire de psychiatrie infanto-juvénile, CHRU de Brest, Brest, France
| | - Michel Botbol
- Service universitaire de psychiatrie infanto-juvénile, CHRU de Brest, Brest, France
| | - Marine Grandgeorge
- Service universitaire de psychiatrie infanto-juvénile, CHRU de Brest, Brest, France.,Laboratoire de Neurosciences de Brest, Université de Bretagne Occidentale, Brest, France.,EthoS (Éthologie animale et humaine) - UMR 6552, Univ Rennes, Normandie Univ, CNRS, Paimpont, France
| |
Collapse
|
11
|
Santos GRD, Cabral LC, Silva LR, Dionisio J. Physiotherapeutic stimulation in infants with Down syndrome to promote crawling. FISIOTERAPIA EM MOVIMENTO 2020. [DOI: 10.1590/1980-5918.033.ao54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: Down syndrome (DS) is a genetic disorder characterized mainly by ligament laxity and hypotonia. Infants with this syndrome have substantial motor retardation also with crawling. To reach this motor milestone, postural control and head and neck control in the prone position are necessary. Seeking to avoid atypical muscular synergies and facilitate the execution of functional activities, the Bobath Concept aims to stimulate weight transfers, promoting motor acquisitions in the prone, supine, sitting and standing positions. Objective: To evaluate and compare crawling before and after the intervention through the Bobath Concept method in infants with DS. Method: A longitudinal, prospective, evaluative and interventional study was carried out. The sample was composed of 4 infants with DS, aged 7 to 24 months. There were three stages of treatment: evaluation in accordance with the Alberta Infant Motor Scale (AIMS); short term intervention by the Bobath Concept; and re-evaluation using the same scale. Results: According to statistical analysis, there was no significant difference between pre- and post-treatment (t -3.1705, p=0.0504). However, the results obtained by evaluation and reevaluation, showed progress in infants’ activity, the greatest progress being in the prone position. Infant 4 had the most satisfactory result, in percentage, as much as in the prone position (evolving 9.5%), as in general (evolving 22.4%). Conclusion: Infants submitted to intervention with the Bobath Concept obtained evolution in motor development, when comparing before and after therapy.
Collapse
|
12
|
Xiong QL, Wu XY, Yao J, Sukal TM, Xiao N, Chen L, Zheng XL, Liu Y, Hou WS. Inter-Limb Muscle Synergy of Hands-and-Knees Crawling in Typical Developing Infants and Infants with Developmental Delay. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4697-4700. [PMID: 30441398 DOI: 10.1109/embc.2018.8513123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to quantify and compare the inter-limb muscle coordination during crawling between typically developing infants and infants with developmental delay. Typically developing (TD, $\text{N}=$20) infants and infants with at risk of developmental delay (ARDD, $\textbf{N}=$33) or confirmed developmental delayCDD, N=14) participated in this study. Surface electromyography of eight muscles from arms and legs and the corresponding joint kinematic data were collected while they were crawling on hands and knees at their self-selected velocity. The number of used inter-limb muscle synergies during crawling was identified by nonnegative matrix factorization algorithm. Our results showed that there was no significant difference in the number of used muscle synergies between ARDD and TD infants during crawling. However, a reduced number of synergies were identified in infants with CDD, as compared to that in TD and ARDD infants, indicating constrained neuromuscular control strategy during crawling in developmental delayed infants. The absence of inter-limb muscle synergies may be one of the mechanisms underlying the impairments of crawling in developmental delayed infants, who are at high risk of cerebral palsy. This result also suggests that the metrics of muscle synergy during infant crawling, such as the number of synergy, may be feasible as a biomarker for early diagnosis of infants with cerebral palsy.
Collapse
|
13
|
Wei RH, Zhao C, Rao JS, Zhao W, Wei YQ, Zhou X, Tian PY, Liu RX, Yang ZY, Li XG. Neuromuscular control pattern in rhesus monkeys during bipedal walking. Exp Anim 2019; 68:341-349. [PMID: 30930341 PMCID: PMC6699981 DOI: 10.1538/expanim.18-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Walking is characterized by repetitive limb movements associated with highly structured patterns of muscle activity. The causal relationships between the muscle activities and hindlimb segments of walking are difficult to decipher. This study investigated these particular relationships and clarified whether they are correlated with speed to further understand the neuromuscular control pattern. Four adult female rhesus monkeys (Macaca mulatta) were selected to record gait parameters while walking on a bipedal treadmill at speeds of 0.2, 0.8, 1.4, and 2.0 km/h. We recorded 3 ipsilateral hindlimb muscles by surface recording. In this study, we calculated the correlations between electromyography (EMG) and kinematic parameters (24 EMG*17 kinematic parameters). Of the 408 calculated coefficients, 71.6% showed significant linear correlations. Significant linear correlations were found between muscle activity, such as burst amplitudes and the integral of muscle activity, and the corresponding kinematic parameters of each joint. Most of these relationships were speed independent (91.7% of all variables). Through correlation analysis, this study demonstrated a causal association between kinematic and EMG patterns of rhesus monkey locomotion. Individuals have particular musculoskeletal control patterns, and most of the relationships between hindlimb segments and muscles are speed independent. The current findings may enhance our understanding of neuromusculoskeletal control strategies.
Collapse
Affiliation(s)
- Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Can Zhao
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China
| | - Yan-Qin Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Ruo-Xi Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Zhao-Yang Yang
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100069, P.R. China
| |
Collapse
|
14
|
Xiong QL, Wu XY, Yao J, Sukal-Moulton T, Xiao N, Chen L, Zheng XL, Liu Y, Hou WS. Inter-Limb Muscle Synergies and Kinematic Analysis of Hands-and-Knees Crawling in Typically Developing Infants and Infants With Developmental Delay. Front Neurol 2018; 9:869. [PMID: 30386289 PMCID: PMC6198063 DOI: 10.3389/fneur.2018.00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Hands-and-knees-crawling is an important motor developmental milestone and a unique window into the development of central nervous system (CNS). Mobility during crawling is regularly used in clinical assessments to identify delays in motor development. However, possible contribution from CNS impairments to motor development delay is still unknown. The aim of this study was to quantify and compare inter-limb muscle synergy and kinematics during crawling among infants at a similar developmental age, however, clinically determined to be typically developing (TD, N = 20) infants, infants at risk of developmental delay (ARDD, N = 33), or infants with confirmed developmental delay (CDD, N = 13). We hypothesized that even though all of the groups are at a similar developmental age, there would be differences in kinematic measures during crawling, and such differences would be associated with CNS impairment as measured by electromyography (EMG) features. Surface EMG of eight arm and leg muscles and the corresponding joint kinematic data were collected while participants crawled on hands and knees at their self-selected velocity. Temporal-spatial parameters and normalized Jerk-Cost (JC) function (i.e., smoothness of movement) were computed from the measured kinematics. The inter-limb muscle synergy and the number of co-activating muscles per synergy were measured using EMGs. We found that the infants with CDD demonstrated higher normalized JC values (less movement smoothness), fewer muscle synergies, and more co-activating muscles per synergy, compared to infants with TD (p < 0.05) and ARDD (p < 0.05). Furthermore, the normalized JC values were correlated (p < 0.05) with the number of co-activation muscles per synergy. Our results suggest a constrained neuromuscular control strategy due to neurological injury in infants with CDD, and such constrain may contribute to the reduced movement smoothness in infant crawling.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronic Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronic Engineering Technology Research Center, Chongqing University, Chongqing, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronic Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiao L Zheng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronic Engineering Technology Research Center, Chongqing University, Chongqing, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wen S Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronic Engineering Technology Research Center, Chongqing University, Chongqing, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Gao Z, Chen L, Xiong Q, Xiao N, Jiang W, Liu Y, Wu X, Hou W. Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling. Front Neurol 2018; 9:760. [PMID: 30279674 PMCID: PMC6153367 DOI: 10.3389/fneur.2018.00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/22/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Synergistic recruitment of muscular activities is a generally accepted mechanism for motor function control, and motor dysfunction, such as cerebral palsy (CP), destroyed the synergistic electromyography activities of muscle group for limb movement. However, very little is known how motor dysfunction of CP affects the organization of the myoelectric frequency components due to the abnormal motor unit recruiting patterns. Objectives: Exploring whether the myoelectric activity can be represented with synergistic recruitment of surface electromyography (sEMG) frequency components; evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG oscillations. Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited for self-paced crawling on hands and knees. sEMG signals have been recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations are extracted via multivariate empirical mode decomposition (MEMD), and non-negative matrix factorization (NMF) method is employed to obtain synergistic pattern of these sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to quantify the time-varying recruitment of BB and TB myoelectric activity during infants crawling. Results: Three patterns of sEMG oscillation synergies with specific frequency ranges are extracted in BB and TB of CP or TD infants. The contribution of low-frequency oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05) during forward swing phase for slow contraction; however, this low-frequency oscillation synergy keep higher level during the backward swing phase crawling. For the myoelectric activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for the fast contraction in propulsive phase of CP infants crawling. Conclusion: Our results reveal that, the myoelectric activities of a muscle can be manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient curve of sEMG oscillation synergies is a potential index to evaluate the abnormal recruitment of electromyography activities affected by CP disorders.
Collapse
Affiliation(s)
- Zhixian Gao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Qiliang Xiong
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|