1
|
Zamani M, Okreghe C, Demosthenous A. Efficient Approximation of Action Potentials with High-Order Shape Preservation in Unsupervised Spike Sorting. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4884-4887. [PMID: 36086429 DOI: 10.1109/embc48229.2022.9871487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a novel approximation unit added to the conventional spike processing chain which provides an appreciable reduction of complexity of the high-hardware cost feature extractors. The use of the Taylor polynomial is proposed and modelled employing its cascaded derivatives to non-uniformly capture the essential samples in each spike for reliable feature extraction and sorting. Inclusion of the approximation unit can provide 3X compression (i.e. from 66 to 22 samples) to the spike waveforms while preserving their shapes. Detailed spike waveform sequences based on in-vivo measurements have been generated using a customized neural simulator for performance assessment of the approximation unit tested on six published feature extractors. For noise levels σN between 0.05 and 0.3 and groups of 3 spikes in each channel, all the feature extractors provide almost same sorting performance before and after approximation. The overall implementation cost when including the approximation unit and feature extraction shows a large reduction (i.e. up to 8.7X) in the hardware costly and more accurate feature extractors, offering a substantial improvement in feature extraction design.
Collapse
|
2
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
3
|
Tan S, Xu Z. Intelligent Algorithm-Based Multislice Spiral Computed Tomography to Diagnose Coronary Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4900803. [PMID: 35069783 PMCID: PMC8776441 DOI: 10.1155/2022/4900803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
In this study, dictionary learning and expectation maximization reconstruction (DLEM) was combined to denoise 64-slice spiral CT images, and results of coronary angiography (CAG) were used as standard to evaluate its clinical value in diagnosing coronary artery diseases. 120 patients with coronary heart disease (CHD) confirmed by CAG examination were retrospectively selected as the research subjects. According to the random number table method, the patients were divided into two groups: the control group was diagnosed by conventional 64-slice spiral CT images, and the observation group was diagnosed by 64-slice spiral CT images based on the DLEM algorithm, with 60 cases in both groups. With CAG examination results as the standard, the diagnostic effects of the two CT examination methods were compared. The results showed that when the number of iterations of maximum likelihood expectation maximization (MLEM) algorithm reached 50, the root mean square error (RMSE) and peak signal to noise ratio (PSNR) values were similar to the results obtained by the DLEM algorithm under a number of iterations of 10 when the RMSE and PSNR values were 18.9121 dB and 74.9911 dB, respectively. In the observation group, 28.33% (17/60) images were of grade 4 or above before processing; after processing, it was 70% (42/60), significantly higher than the proportion of high image quality before processing. The overall diagnostic consistency, sensitivity, specificity, and accuracy (88.33%, 86.67%, 80%, and 85%) of the observation group were better than those in the control group (60.46%, 62.5%, 58.33%, and 61.66%). In conclusion, the DLEM algorithm has good denoising effect on 64-slice spiral CT images, which significantly improves the accuracy in the diagnosis of coronary artery stenosis and has good clinical diagnostic value and is worth promoting.
Collapse
Affiliation(s)
- Shaowen Tan
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zili Xu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Ahmadi-Dastgerdi N, Hosseini-Nejad H, Amiri H, Shoeibi A, Gorriz JM. A Vector Quantization-Based Spike Compression Approach Dedicated to Multichannel Neural Recording Microsystems. Int J Neural Syst 2021; 32:2250001. [PMID: 34931938 DOI: 10.1142/s0129065722500010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Implantable high-density multichannel neural recording microsystems provide simultaneous recording of brain activities. Wireless transmission of the entire recorded data causes high bandwidth usage, which is not tolerable for implantable applications. As a result, a hardware-friendly compression module is required to reduce the amount of data before it is transmitted. This paper presents a novel compression approach that utilizes a spike extractor and a vector quantization (VQ)-based spike compressor. In this approach, extracted spikes are vector quantized using an unsupervised learning process providing a high spike compression ratio (CR) of 10-80. A combination of extracting and compressing neural spikes results in a significant data reduction as well as preserving the spike waveshapes. The compression performance of the proposed approach was evaluated under variant conditions. We also developed new architectures such that the hardware blocks of our approach can be implemented more efficiently. The compression module was implemented in a 180-nm standard CMOS process achieving a SNDR of 14.49[Formula: see text]dB and a classification accuracy (CA) of 99.62% at a CR of 20, while consuming 4[Formula: see text][Formula: see text]W power and 0.16[Formula: see text]mm2 chip area per channel.
Collapse
Affiliation(s)
| | | | - Hadi Amiri
- School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Research Lab K. N. Toosi, University of Technology, Tehran, Iran
| | - Juan Manuel Gorriz
- Department of Signal Processing Networking and Communications, University of Granada, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Toosi R, Akhaee MA, Dehaqani MRA. An automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions. Sci Rep 2021; 11:13925. [PMID: 34230517 PMCID: PMC8260722 DOI: 10.1038/s41598-021-93088-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Developing high-density electrodes for recording large ensembles of neurons provides a unique opportunity for understanding the mechanism of the neuronal circuits. Nevertheless, the change of brain tissue around chronically implanted neural electrodes usually causes spike wave-shape distortion and raises the crucial issue of spike sorting with an unstable structure. The automatic spike sorting algorithms have been developed to extract spikes from these big extracellular data. However, due to the spike wave-shape instability, there have been a lack of robust spike detection procedures and clustering to overcome the spike loss problem. Here, we develop an automatic spike sorting algorithm based on adaptive spike detection and a mixture of skew-t distributions to address these distortions and instabilities. The adaptive detection procedure applies to the detected spikes, consists of multi-point alignment and statistical filtering for removing mistakenly detected spikes. The detected spikes are clustered based on the mixture of skew-t distributions to deal with non-symmetrical clusters and spike loss problems. The proposed algorithm improves the performance of the spike sorting in both terms of precision and recall, over a broad range of signal-to-noise ratios. Furthermore, the proposed algorithm has been validated on different datasets and demonstrates a general solution to precise spike sorting, in vitro and in vivo.
Collapse
Affiliation(s)
- Ramin Toosi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Akhaee
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mohammad-Reza A Dehaqani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran. .,Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran. .,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
6
|
Thies J, Alimohammad A. Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1529-1538. [PMID: 31331895 DOI: 10.1109/tnsre.2019.2929081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Implantable microsystems that collect and transmit neural data are becoming very useful entities in the field of neuroscience. Limited by high data rates, on-chip compression is often required to transmit the recorded data without causing power dissipation at levels that would damage sensitive brain tissue. This paper presents a data compression system designed for brain-computer interfaces (BCIs) based on undercomplete autoencoders. To the best of our knowledge, the proposed system is the first to achieve an average spike reconstruction quality of 14-dB signal-to-noise-and-distortion ratio (SNDR) at a 32× compression ratio (CR), 18-dB SNDR at a 16× CR, 22-dB SNDR at an 8× CR, and 35-dB SNDR at a 4× CR of neural spikes. The spike detection and autoencoder-based compression modules are designed and implemented in a standard 45-nm CMOS process. The post-synthesis simulation results report that the compression module consumes between 1.4 and 222.5 [Formula: see text] of power per channel and takes between 0.018 and 0.082mm2 of silicon area, depending on the desired CR and number of channels.
Collapse
|