1
|
Lv Y, Zhang W, Zhang X, Xu J. Hip-Knee Motion-Lagged Coordination Mapping Enables Speed Adaptive Walking for Powered Knee Prosthesis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2782-2792. [PMID: 39078764 DOI: 10.1109/tnsre.2024.3435931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The commonly used finite-state-machine (FSM) impedance control for powered prostheses deploys diverse control parameters according to different gait phases, resulting in dozens of parameter adjustments and possible gait phase misrecognition. In contrast, this study presents a straightforward, continuous, and speed-adaptive control approach based on hip-knee motion-lagged coordination mapping (MLCM). The mapping, featured by the motion lag, can effectively generate the prosthetic knee's goal gait within a second-order polynomial. It is also verified from extensive gait analysis that the motion lag and polynomial coefficients evolve linearly with respect to walking speed and gait period, promising a simple real-time deployment for prosthesis control. Experimental validation with two non-disabled subjects and two transfemoral amputees wearing a prosthesis demonstrates the MLCM controller's ability to reduce the hip compensatory behavior, generate biomimetic knee kinematics, stance phase time, stride length, and hip-knee motion coordination across various speeds. Furthermore, compared to the benchmark FSM impedance controller, the MLCM controller reduces the number of control parameters from 17 to 7 and avoids misrecognition during gait phase transitions.
Collapse
|
2
|
Kestur S, Zhou S, O'Sullivan G, Young A, Herrin K. Comparing the lower limb joint biomechanics of the Power Knee, C-Leg and Rheo Knee during ramp and stair ambulation. J Biomech 2024; 171:112201. [PMID: 38936310 DOI: 10.1016/j.jbiomech.2024.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
One of the most significant developments in prosthetic knee technology has been the introduction of the Microprocessor-Controlled Prosthetic Knee (MPK). However, there is a lack of consensus over how different types of MPKs affect performance in different ambulation modes. In this study, we investigated the biomechanical differences in ramp and stair maneuvers when an individual with transfemoral amputation wears three commercial MPKs: the Össur Power Knee, the Össur Rheo Knee and the Ottobock C-Leg 4. The primary outcome variable for this study was the lower limb biological joint work, inclusive of the intact leg and prosthetic side hip. We hypothesized that (1) the Power Knee would result in lower biological work during ascent activities than the C-Leg and Rheo, both passive MPKs, and (2) the C-Leg and Rheo would result in lower biological work during descent activities than the Power Knee. During ramp ascent, the C-Leg was associated with lower biological joint work (p < 0.05) than the Power Knee. However, this relationship did not hold during stair ascent, where the Power Knee showed advantages for stair ascent with net reductions in biological joint work of 14.1% and 23.3% compared to the Rheo and C-leg, respectively. There were no significant differences in biological joint work between the knees during ramp and stair descent, indicating that choice of MPK may not be as important for descent activities. Our results demonstrate that differences are present between different types of MPKs during ascent activities which could prove useful in the prescription of these devices.
Collapse
Affiliation(s)
- Sujay Kestur
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Sixu Zhou
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
| | - Gwyn O'Sullivan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Aaron Young
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
| | - Kinsey Herrin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Cortino RJ, Best TK, Gregg RD. Data-Driven Phase-Based Control of a Powered Knee-Ankle Prosthesis for Variable-Incline Stair Ascent and Descent. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2024; 6:175-188. [PMID: 38304755 PMCID: PMC10829527 DOI: 10.1109/tmrb.2023.3328656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion.
Collapse
Affiliation(s)
- Ross J Cortino
- Department of Robotics, University of Michigan, Ann Arbor, MI 48109
| | - T Kevin Best
- Department of Robotics, University of Michigan, Ann Arbor, MI 48109
| | - Robert D Gregg
- Department of Robotics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Knight AD, Jayaraman C, Elrod JM, Schnall BL, McGuire MS, Sleeman TJ, Hoppe-Ludwig S, Dearth CL, Hendershot BD, Jayaraman A. Functional Performance Outcomes of a Powered Knee-Ankle Prosthesis in Service Members With Unilateral Transfemoral Limb Loss. Mil Med 2023; 188:3432-3438. [PMID: 35895305 DOI: 10.1093/milmed/usac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Clinical knowledge surrounding functional outcomes of a powered knee-ankle (PKA) device is limited, particularly among younger and active populations with limb loss. Here, three service members (SM) with unilateral transfemoral limb loss received an optimally tuned PKA prosthesis and device-specific training. MATERIALS AND METHODS Once proficiency with the PKA device was demonstrated on benchmark activities, and outcomes with the PKA and standard-of-care (SoC) prostheses were obtained via a modified graded treadmill test, 6-minute walk test, and overground gait assessment. RESULTS All SM demonstrated proficiency with the PKA prosthesis within the minimum three training sessions. With the PKA versus SoC prosthesis, cost of transport during the modified graded treadmill test was 4.0% ± 5.2% lower at slower speeds (i.e., 0.6-1.2 m/s), but 7.0% ± 5.1% greater at the faster walking speeds (i.e., ≥1.4 m/s). For the 6-minute walk test, SM walked 83.9 ± 13.2 m shorter with the PKA versus SoC prosthesis. From the overground gait assessment, SM walked with 20.6% ± 10.5% greater trunk lateral flexion and 31.8% ± 12.8% greater trunk axial rotation ranges of motion, with the PKA versus SoC prosthesis. CONCLUSIONS Compared to prior work with the PKA in a civilian cohort, although SM demonstrated faster device proficiency (3 versus 12 sessions), SM walked with greater compensatory motions compared to their SoC prostheses (contrary to the civilian cohort). As such, it is important to understand patient-specific factors among various populations with limb loss for optimizing device-specific training and setting functional goals for occupational and/or community reintegration, as well as reducing the risk for secondary complications over the long term.
Collapse
Affiliation(s)
- Ashley D Knight
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Chandrasekaran Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan M Elrod
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Barri L Schnall
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Matt S McGuire
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Todd J Sleeman
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Shenan Hoppe-Ludwig
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Christopher L Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Surgery, Walter Reed National Military Medical Center-Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Brad D Hendershot
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Best TK, Welker CG, Rouse EJ, Gregg RD. Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking. IEEE T ROBOT 2023; 39:2151-2169. [PMID: 37304232 PMCID: PMC10249435 DOI: 10.1109/tro.2022.3226887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Most impedance-based walking controllers for powered knee-ankle prostheses use a finite state machine with dozens of user-specific parameters that require manual tuning by technical experts. These parameters are only appropriate near the task (e.g., walking speed and incline) at which they were tuned, necessitating many different parameter sets for variable-task walking. In contrast, this paper presents a data-driven, phase-based controller for variable-task walking that uses continuously-variable impedance control during stance and kinematic control during swing to enable biomimetic locomotion. After generating a data-driven model of variable joint impedance with convex optimization, we implement a novel task-invariant phase variable and real-time estimates of speed and incline to enable autonomous task adaptation. Experiments with above-knee amputee participants (N=2) show that our data-driven controller 1) features highly-linear phase estimates and accurate task estimates, 2) produces biomimetic kinematic and kinetic trends as task varies, leading to low errors relative to able-bodied references, and 3) produces biomimetic joint work and cadence trends as task varies. We show that the presented controller meets and often exceeds the performance of a benchmark finite state machine controller for our two participants, without requiring manual impedance tuning.
Collapse
Affiliation(s)
- T Kevin Best
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| | - Cara Gonzalez Welker
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| | - Elliott J Rouse
- Department of Mechanical Engineering and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert D Gregg
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Bader Y, Langlois D, Baddour N, Lemaire ED. Development of an Integrated Powered Hip and Microprocessor-Controlled Knee for a Hip-Knee-Ankle-Foot Prosthesis. Bioengineering (Basel) 2023; 10:bioengineering10050614. [PMID: 37237684 DOI: 10.3390/bioengineering10050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Hip-knee-ankle-foot prostheses (HKAF) are full lower-limb devices for people with hip amputations that enable individuals to regain their mobility and move freely within their chosen environment. HKAFs typically have high rejection rates among users, as well as gait asymmetry, increased trunk anterior-posterior lean, and increased pelvic tilt. A novel integrated hip-knee (IHK) unit was designed and evaluated to address the limitations of existing solutions. This IHK combines powered hip and microprocessor-controlled knee joints into one structure, with shared electronics, sensors, and batteries. The unit is also adjustable to user leg length and alignment. ISO-10328:2016 standard mechanical proof load testing demonstrated acceptable structural safety and rigidity. Successful functional testing involved three able-bodied participants walking with the IHK in a hip prosthesis simulator. Hip, knee, and pelvic tilt angles were recorded and stride parameters were analyzed from video recordings. Participants were able to walk independently using the IHK and data showed that participants used different walking strategies. Future development of the thigh unit should include completion of a synergistic gait control system, improved battery-holding mechanism, and amputee user testing.
Collapse
Affiliation(s)
- Yousef Bader
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Ave., Ottawa, ON K1N 6N5, Canada
| | | | - Natalie Baddour
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Ave., Ottawa, ON K1N 6N5, Canada
| | - Edward D Lemaire
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Ave., Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Domínguez-Ruiz A, López-Caudana EO, Lugo-González E, Espinosa-García FJ, Ambrocio-Delgado R, García UD, López-Gutiérrez R, Alfaro-Ponce M, Ponce P. Low limb prostheses and complex human prosthetic interaction: A systematic literature review. Front Robot AI 2023; 10:1032748. [PMID: 36860557 PMCID: PMC9968924 DOI: 10.3389/frobt.2023.1032748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
A few years ago, powered prostheses triggered new technological advances in diverse areas such as mobility, comfort, and design, which have been essential to improving the quality of life of individuals with lower limb disability. The human body is a complex system involving mental and physical health, meaning a dependant relationship between its organs and lifestyle. The elements used in the design of these prostheses are critical and related to lower limb amputation level, user morphology and human-prosthetic interaction. Hence, several technologies have been employed to accomplish the end user's needs, for example, advanced materials, control systems, electronics, energy management, signal processing, and artificial intelligence. This paper presents a systematic literature review on such technologies, to identify the latest advances, challenges, and opportunities in developing lower limb prostheses with the analysis on the most significant papers. Powered prostheses for walking in different terrains were illustrated and examined, with the kind of movement the device should perform by considering the electronics, automatic control, and energy efficiency. Results show a lack of a specific and generalised structure to be followed by new developments, gaps in energy management and improved smoother patient interaction. Additionally, Human Prosthetic Interaction (HPI) is a term introduced in this paper since no other research has integrated this interaction in communication between the artificial limb and the end-user. The main goal of this paper is to provide, with the found evidence, a set of steps and components to be followed by new researchers and experts looking to improve knowledge in this field.
Collapse
Affiliation(s)
- Adan Domínguez-Ruiz
- Institute for the Future of Education, Tecnologico de Monterrey, Mexico City, México
| | | | - Esther Lugo-González
- Instituto de Electrónica y Mecatrónica, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, México
| | | | - Rocío Ambrocio-Delgado
- División de Estudios de Posgrado, Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, México
| | - Ulises D. García
- CONACYT-CINVESTAV, Av. Instituto Politécnico Nacional 2508, col. San Pedro Zacatenco, Ciudad deMéxico, México
| | - Ricardo López-Gutiérrez
- CONACYT-CINVESTAV, Av. Instituto Politécnico Nacional 2508, col. San Pedro Zacatenco, Ciudad deMéxico, México
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Mexico City, México
| | - Pedro Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Mexico City, México,*Correspondence: Pedro Ponce,
| |
Collapse
|
8
|
Li Z, Liu C, Han Y, Wang T, Lei R. Design, fabrication and experiments of a hydraulic active-passive hybrid prosthesis knee. Technol Health Care 2023:THC220522. [PMID: 36641694 DOI: 10.3233/thc-220522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Due to low friction, passive mechanical prostheses move compliantly followed by the stump and are used widely. Advanced semi-active prostheses can both move passively like passive prostheses and provide active torque under specific conditions. However, the current mechanical-hydraulic coupling driven semi-active prostheses, in order to meet the low passive friction requirements with a low active transmission ratio, lead to a significant problem of insufficient active torque. OBJECTIVE A hybrid active and passive prosthesis was developed to solve the incompatibility problem of low passive friction and high active driving torque of semi-active prostheses. METHODS The mechanical structure and control strategy of the prosthesis were demonstrated. The performance of the prosthesis was tested by bench and human tests. RESULTS Passive subsystem damping adjustment ranges from 0.4 N⋅(mm/s)-1 to 300 N⋅(mm/s)-1. The switching time between the damping and the active subsystem is 32 ± 2 ms. The continuous active torque output is more than 24 Nm. In level walking, the peak torque is about 28 Nm. CONCLUSION The proposed active-passive hybrid hydraulic prosthesis could satisfy both low passive friction and high active actuation.
Collapse
Affiliation(s)
- Zhennan Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, China.,Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Chunbao Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, China.,Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yang Han
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, China.,Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Tongjian Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, China
| | - Ren Lei
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China.,School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Horn JC, Gregg RD. Nonholonomic Virtual Constraints for Control of Powered Prostheses Across Walking Speeds. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2022; 30:2062-2071. [PMID: 35990403 PMCID: PMC9390073 DOI: 10.1109/tcst.2021.3133823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes. This work extends the notion of NHVCs for application to variable-cadence powered prostheses. Using the segmental conjugate momentum for the prosthesis, an optimization problem is used to design a single stance-phase NHVC for three distinct walking speed trajectories (slow, normal, and fast). This stance-phase controller is implemented with a holonomic swing phase controller on a powered knee-ankle prosthesis, and experiments are conducted with an able-bodied user walking in steady and non-steady velocity conditions. The control scheme is capable of representing 1) multiple, task-dependent reference trajectories, and 2) walking gait variance due to both temporal and kinematic changes in user motion.
Collapse
Affiliation(s)
- Jonathan C Horn
- Department of Mechanical Engineering and Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Robert D Gregg
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
10
|
Knight AD, Bass SR, Elrod JM, Hassinger LM, Dearth CL, Gonzalez-Vargas J, Hendershot BD, Han Z. Toward Developing a Powered Ankle-Foot Prosthesis With Electromyographic Control to Enhance Functional Performance: A Case Study in a U.S. Service Member. Mil Med 2022; 188:usac038. [PMID: 35234252 DOI: 10.1093/milmed/usac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
The only commercially available ankle-foot prosthesis with powered propulsion lacks ruggedization and other capabilities for service members seeking to return to duty and/or other physically demanding activities. Here, we evaluated a ruggedized powered ankle-foot prosthesis with electromyographic control ("Warrior Ankle"; WA) in an experienced male user of the predicate (Empower) prosthesis. The participant (age = 56 years, mass = 86.8 kg, stature = 173 cm) completed a 650 m simulated hike with varying terrain at a fixed, self-selected speed in the WA and predicate prosthesis, with and without a 22.8 kg weighted vest ("loaded" and "unloaded," respectively). Peak dorsiflexion and plantarflexion angles were extracted from each gait cycle throughout the simulated hike (∼500 prosthetic-side steps). The participant walked faster with the WA (1.15 m/s) compared to predicate (0.80 m/s) prosthesis. On the prosthetic side, peak dorsiflexion angles were larger for the WA (loaded: 27.9°; unloaded: 26.9°) compared to the predicate (loaded: 19.4°; unloaded: 21.3°); peak plantarflexion angles were similar between prostheses and loading conditions [WA (loaded: 15.5°; unloaded: 14.9°), predicate (loaded: 16.9°; unloaded: 14.8°). The WA better accommodated the varying terrain profile, evidenced by greater peak dorsiflexion angles, as well as dorsiflexion and plantarflexion angles that more closely matched or exceeded those of the innate ankle [dorsiflexion (WA: 31.6°, predicate: 27.5°); plantarflexion (WA: 20.7°, predicate: 20.5°)]. Furthermore, the WA facilitated a faster walking speed, suggesting a greater functional capacity with the WA prosthesis. Although further design enhancements are needed, this case study demonstrated feasibility of a proof-of-concept, ruggedized powered ankle-foot prosthesis with electromyographic control.
Collapse
Affiliation(s)
- Ashley D Knight
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah R Bass
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Jonathan M Elrod
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Louise M Hassinger
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L Dearth
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Brad D Hendershot
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Zhixiu Han
- Ottobock SE & Co. KGaA, Duderstadt 37115, Germany
| |
Collapse
|
11
|
Naeem A, Rizwan M, Farhan Maqbool H, Ahsan M, Raza A, Abouhossein A, Ali Dehghani-Sanij A. Virtual constraint control of Knee-Ankle prosthesis using an improved estimate of the thigh phase-variable. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Reznick E, Embry KR, Neuman R, Bolívar-Nieto E, Fey NP, Gregg RD. Lower-limb kinematics and kinetics during continuously varying human locomotion. Sci Data 2021; 8:282. [PMID: 34711856 PMCID: PMC8553836 DOI: 10.1038/s41597-021-01057-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Human locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.
Collapse
Affiliation(s)
- Emma Reznick
- University of Michigan, Robotics Institute, Ann Arbor, MI, 48109, USA
| | - Kyle R Embry
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, TX, 75080, USA
- Shirley Ryan AbilityLab, Center for Bionic Medicine, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Ross Neuman
- University of Texas at Austin, Department of Mechanical Engineering, Austin, TX, 78712, USA
| | - Edgar Bolívar-Nieto
- University of Michigan, Robotics Institute, Ann Arbor, MI, 48109, USA
- University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, MI, 48109, USA
| | - Nicholas P Fey
- University of Texas at Austin, Department of Mechanical Engineering, Austin, TX, 78712, USA
| | - Robert D Gregg
- University of Michigan, Robotics Institute, Ann Arbor, MI, 48109, USA.
- University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Cheng S, Bolivar-Nieto E, Gregg RD. Real-Time Activity Recognition With Instantaneous Characteristic Features of Thigh Kinematics. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1827-1837. [PMID: 34428147 PMCID: PMC8446341 DOI: 10.1109/tnsre.2021.3107780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current supervised learning or deep learning-based activity recognition classifiers can achieve high accuracy in recognizing locomotion activities. Most available techniques use a high-dimensional space of features, e.g., combinations of EMG, kinematics and kinetics, and transformations over those signals. The associated classification rules are therefore complex; the machine tries to understand the human, but the human does not understand the machine. This paper presents an activity recognition system that uses signals from a thigh-mounted IMU and a force sensitive resistor to classify transitions between sitting, walking, stair ascending, and stair descending. The system uses the thigh's orientation and velocity with foot contact information at specific moments within a given activity as the features to classify transitions to other activities. We call these Instantaneous Characteristic Features (ICFs). Because these ICFs are biomechanically intuitive, they are easy for the user to understand and thus control the activity transitions of wearable robots. We assessed our classification algorithm offline using an existing dataset with 10 able-bodied subjects and online with another 10 able-bodied subjects wearing a real-time system. The offline study analyzed the effect of subject-dependency and ramp inclinations. The real-time classification accuracy was evaluated before and after training the subjects on the ICFs. The real-time system achieved overall pre-subject-training and post-subject-training error rates of 0.59% ± 0.24% and 0.56% ± 0.20%, respectively. We also evaluated the feasibility of our ICFs for amputee ambulation by analyzing a public dataset with the open-source bionic leg. The simplicity of these classification rules demonstrates a new paradigm for activity recognition where the human can understand the machine and vice-versa.
Collapse
|
14
|
Best TK, Embry KR, Rouse EJ, Gregg RD. Phase-Variable Control of a Powered Knee-Ankle Prosthesis over Continuously Varying Speeds and Inclines. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2021; 2021:6182-6189. [PMID: 35251752 DOI: 10.1109/iros51168.2021.9636180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for every combination of speed and incline that the device is designed for. Because ambulation occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a potentially prohibitively large number of parameters. This limitation motivates an alternative control framework that enables walking over a range of speeds and inclines while requiring only a limited number of tunable parameters. In this work, we present the implementation of a continuously varying kinematic controller on a custom powered knee-ankle prosthesis. The controller uses a phase variable derived from the residual thigh angle, along with real-time estimates of ground inclination and walking speed, to compute the appropriate knee and ankle joint angles from a continuous model of able-bodied kinematic data. We modify an existing phase variable architecture to allow for changes in speeds and inclines, quantify the closed-loop accuracy of the speed and incline estimation algorithms for various references, and experimentally validate the controller by observing that it replicates kinematic trends seen in able-bodied gait as speed and incline vary.
Collapse
Affiliation(s)
- T Kevin Best
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kyle R Embry
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, and the Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611
| | - Elliott J Rouse
- Department of Mechanical Engineering and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert D Gregg
- Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Raz D, Bolívar-Nieto E, Ozay N, Gregg RD. Toward Phase-Variable Control of Sit-to-Stand Motion with a Powered Knee-Ankle Prosthesis. CONTROL TECHNOLOGY AND APPLICATIONS. CONTROL TECHNOLOGY AND APPLICATIONS 2021; 2021:627-633. [PMID: 35224560 PMCID: PMC8868489 DOI: 10.1109/ccta48906.2021.9658844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.
Collapse
Affiliation(s)
- Daphna Raz
- Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Necmiye Ozay
- Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert D. Gregg
- Robotics Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Embry KR, Gregg RD. Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications. IEEE Trans Neural Syst Rehabil Eng 2020; 29:262-272. [PMID: 33320814 DOI: 10.1109/tnsre.2020.3045003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Powered prosthetic legs can improve the quality of life for people with transfemoral amputations by providing net positive work at the knee and ankle, reducing the effort required from the wearer, and making more tasks possible. However, the controllers for these devices use finite state machines that limit their use to a small set of pre-defined tasks that require many hours of tuning for each user. In previous work, we demonstrated that a continuous parameterization of joint kinematics over walking speeds and inclines provides more accurate predictions of reference kinematics for control than a finite state machine. However, our previous work did not account for measurement errors in gait phase, walking speed, and ground incline, nor subject-specific differences in reference kinematics, which occur in practice. In this work, we conduct a pilot experiment to characterize the accuracy of speed and incline measurements using sensors onboard our prototype prosthetic leg and simulate phase measurements on ten able-bodied subjects using archived motion capture data. Our analysis shows that given demonstrated accuracy for speed, incline, and phase estimation, a continuous parameterization provides statistically significantly better predictions of knee and ankle kinematics than a comparable finite state machine, but both methods' primary source of predictive error is subject deviation from average kinematics.
Collapse
|
17
|
Elery T, Rezazadeh S, Reznick E, Gray L, Gregg RD. Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2944-2954. [PMID: 33232241 DOI: 10.1109/tnsre.2020.3040260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation.
Collapse
|