1
|
Venot T, Desbois A, Corsi MC, Hugueville L, Saint-Bauzel L, De Vico Fallani F. Intentional binding for noninvasive BCI control. J Neural Eng 2024; 21:046026. [PMID: 38996409 DOI: 10.1088/1741-2552/ad628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Objective. Noninvasive brain-computer interfaces (BCIs) allow to interact with the external environment by naturally bypassing the musculoskeletal system. Making BCIs efficient and accurate is paramount to improve the reliability of real-life and clinical applications, from open-loop device control to closed-loop neurorehabilitation.Approach. By promoting sense of agency and embodiment, realistic setups including multimodal channels of communication, such as eye-gaze, and robotic prostheses aim to improve BCI performance. However, how the mental imagery command should be integrated in those hybrid systems so as to ensure the best interaction is still poorly understood. To address this question, we performed a hybrid EEG-based BCI training involving healthy volunteers enrolled in a reach-and-grasp action operated by a robotic arm.Main results. Showed that the hand grasping motor imagery timing significantly affects the BCI accuracy evolution as well as the spatiotemporal brain dynamics. Larger accuracy improvement was obtained when motor imagery is performed just after the robot reaching, as compared to before or during the movement. The proximity with the subsequent robot grasping favored intentional binding, led to stronger motor-related brain activity, and primed the ability of sensorimotor areas to integrate information from regions implicated in higher-order cognitive functions.Significance. Taken together, these findings provided fresh evidence about the effects of intentional binding on human behavior and cortical network dynamics that can be exploited to design a new generation of efficient brain-machine interfaces.
Collapse
Affiliation(s)
- Tristan Venot
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Arthur Desbois
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Marie Constance Corsi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Ludovic Saint-Bauzel
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotiques ISIR, F-75005 Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
2
|
Candia-Rivera D, Chavez M, De Vico Fallani F. Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Netw Neurosci 2024; 8:557-575. [PMID: 38952808 PMCID: PMC11168717 DOI: 10.1162/netn_a_00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Rosanne O, Alves de Oliveira A, Falk TH. EEG Amplitude Modulation Analysis across Mental Tasks: Towards Improved Active BCIs. SENSORS (BASEL, SWITZERLAND) 2023; 23:9352. [PMID: 38067725 PMCID: PMC10708818 DOI: 10.3390/s23239352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Brain-computer interface (BCI) technology has emerged as an influential communication tool with extensive applications across numerous fields, including entertainment, marketing, mental state monitoring, and particularly medical neurorehabilitation. Despite its immense potential, the reliability of BCI systems is challenged by the intricacies of data collection, environmental factors, and noisy interferences, making the interpretation of high-dimensional electroencephalogram (EEG) data a pressing issue. While the current trends in research have leant towards improving classification using deep learning-based models, our study proposes the use of new features based on EEG amplitude modulation (AM) dynamics. Experiments on an active BCI dataset comprised seven mental tasks to show the importance of the proposed features, as well as their complementarity to conventional power spectral features. Through combining the seven mental tasks, 21 binary classification tests were explored. In 17 of these 21 tests, the addition of the proposed features significantly improved classifier performance relative to using power spectral density (PSD) features only. Specifically, the average kappa score for these classifications increased from 0.57 to 0.62 using the combined feature set. An examination of the top-selected features showed the predominance of the AM-based measures, comprising over 77% of the top-ranked features. We conclude this paper with an in-depth analysis of these top-ranked features and discuss their potential for use in neurophysiology.
Collapse
Affiliation(s)
- Olivier Rosanne
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil;
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| |
Collapse
|
4
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
5
|
Zhu S, Hosni SI, Huang X, Wan M, Borgheai SB, McLinden J, Shahriari Y, Ostadabbas S. A dynamical graph-based feature extraction approach to enhance mental task classification in brain-computer interfaces. Comput Biol Med 2023; 153:106498. [PMID: 36634598 DOI: 10.1016/j.compbiomed.2022.106498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Graph theoretic approaches in analyzing spatiotemporal dynamics of brain activities are under-studied but could be very promising directions in developing effective brain-computer interfaces (BCIs). Many existing BCI systems use electroencephalogram (EEG) signals to record and decode human neural activities noninvasively. Often, however, the features extracted from the EEG signals ignore the topological information hidden in the EEG temporal dynamics. Moreover, existing graph theoretic approaches are mostly used to reveal the topological patterns of brain functional networks based on synchronization between signals from distinctive spatial regions, instead of interdependence between states at different timestamps. In this study, we present a robust fold-wise hyperparameter optimization framework utilizing a series of conventional graph-based measurements combined with spectral graph features and investigate its discriminative performance on classification of a designed mental task in 6 participants with amyotrophic lateral sclerosis (ALS). Across all of our participants, we reached an average accuracy of 71.1%±4.5% for mental task classification by combining the global graph-based measurements and the spectral graph features, higher than the conventional non-graph based feature performance (67.1%±7.5%). Compared to using either one of the graphic features (66.3%±6.5% for the eigenvalues and 65.9%±5.2% for the global graph features), our feature combination strategy shows considerable improvement in both accuracy and robustness performance. Our results indicate the feasibility and advantage of the presented fold-wise optimization framework utilizing graph-based features in BCI systems targeted at end-users.
Collapse
Affiliation(s)
- Shaotong Zhu
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sarah Ismail Hosni
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Xiaofei Huang
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Michael Wan
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Seyyed Bahram Borgheai
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - John McLinden
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Yalda Shahriari
- The Electrical, Computer, and Biomedical Engineering Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sarah Ostadabbas
- The Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Liu W, Xie J, Liu H, Xiao J. Heterogeneity induced splay state of amplitude envelope in globally coupled oscillators. CHAOS (WOODBURY, N.Y.) 2022; 32:123117. [PMID: 36587328 DOI: 10.1063/5.0130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Splay states of the amplitude envelope are stably observed as a heterogenous node is introduced into the globally coupled identical oscillators with repulsive coupling. With the increment of the frequency mismatches between the heterogenous nodes and the rest identical globally coupled oscillators, the formal stable splay state based on the time series becomes unstable, while a splay state based on the new-born amplitude envelopes of time series is stably observed among the rest identical oscillators. The characteristics of the splay state based on the amplitude envelope are numerically and theoretically presented for different parameters of the coupling strength ϵ and the frequency mismatches Δω for small coupling strength and large frequency mismatches. We expect that all these results could reveal the generality of splay states in coupled nonidentical oscillators and help to understand the rich dynamics of amplitude envelopes in multidisciplinary fields.
Collapse
Affiliation(s)
- Weiqing Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jiangnan Xie
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hanchang Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jinghua Xiao
- School of Science, Beijing University of Posts and Communications, Beijing 100876, China
| |
Collapse
|
7
|
Li X, Chen P, Yu X, Jiang N. Analysis of the Relationship Between Motor Imagery and Age-Related Fatigue for CNN Classification of the EEG Data. Front Aging Neurosci 2022; 14:909571. [PMID: 35912081 PMCID: PMC9329804 DOI: 10.3389/fnagi.2022.909571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe aging of the world population poses a major health challenge, and brain–computer interface (BCI) technology has the potential to provide assistance and rehabilitation for the elderly.ObjectivesThis study aimed to investigate the electroencephalogram (EEG) characteristics during motor imagery by comparing young and elderly, and study Convolutional Neural Networks (CNNs) classification for the elderly population in terms of fatigue analysis in both frontal and parietal regions.MethodsA total of 20 healthy individuals participated in the study, including 10 young and 10 older adults. All participants completed the left- and right-hand motor imagery experiment. The energy changes in the motor imagery process were analyzed using time–frequency graphs and quantified event-related desynchronization (ERD) values. The fatigue level of the motor imagery was assessed by two indicators: (θ + α)/β and θ/β, and fatigue-sensitive channels were distinguished from the parietal region of the brain. Then, rhythm entropy was introduced to analyze the complexity of the cognitive activity. The phase-lock values related to the parietal and frontal lobes were calculated, and their temporal synchronization was discussed. Finally, the motor imagery EEG data was classified by CNNs, and the accuracy was discussed based on the analysis results.ResultFor the young and elderly, ERD was observed in C3 and C4 channels, and their fatigue-sensitive channels in the parietal region were slightly different. During the experiment, the rhythm entropy of the frontal lobe showed a decreasing trend with time for most of the young subjects, while there was an increasing trend for most of the older ones. Using the CNN classification method, the elderly achieved around 70% of the average classification accuracy, which is almost the same for the young adults.ConclusionCompared with the young adults, the elderly are less affected by the level of cognitive fatigue during motor imagery, but the classification accuracy of motor imagery data in the elderly may be slightly lower than that in young persons. At the same time, the deep learning method also provides a potentially feasible option for the application of motor-imagery BCI (MI-BCI) in the elderly by considering the ERD and fatigue phenomenon together.
Collapse
Affiliation(s)
- Xiangyun Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Chen
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Peng Chen
| | - Xi Yu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Jiang
- Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Le Franc S, Herrera Altamira G, Guillen M, Butet S, Fleck S, Lécuyer A, Bougrain L, Bonan I. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci 2022; 16:917909. [PMID: 35911589 PMCID: PMC9332194 DOI: 10.3389/fnhum.2022.917909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stroke is a severe health issue, and motor recovery after stroke remains an important challenge in the rehabilitation field. Neurofeedback (NFB), as part of a brain–computer interface, is a technique for modulating brain activity using on-line feedback that has proved to be useful in motor rehabilitation for the chronic stroke population in addition to traditional therapies. Nevertheless, its use and applications in the field still leave unresolved questions. The brain pathophysiological mechanisms after stroke remain partly unknown, and the possibilities for intervention on these mechanisms to promote cerebral plasticity are limited in clinical practice. In NFB motor rehabilitation, the aim is to adapt the therapy to the patient’s clinical context using brain imaging, considering the time after stroke, the localization of brain lesions, and their clinical impact, while taking into account currently used biomarkers and technical limitations. These modern techniques also allow a better understanding of the physiopathology and neuroplasticity of the brain after stroke. We conducted a narrative literature review of studies using NFB for post-stroke motor rehabilitation. The main goal was to decompose all the elements that can be modified in NFB therapies, which can lead to their adaptation according to the patient’s context and according to the current technological limits. Adaptation and individualization of care could derive from this analysis to better meet the patients’ needs. We focused on and highlighted the various clinical and technological components considering the most recent experiments. The second goal was to propose general recommendations and enhance the limits and perspectives to improve our general knowledge in the field and allow clinical applications. We highlighted the multidisciplinary approach of this work by combining engineering abilities and medical experience. Engineering development is essential for the available technological tools and aims to increase neuroscience knowledge in the NFB topic. This technological development was born out of the real clinical need to provide complementary therapeutic solutions to a public health problem, considering the actual clinical context of the post-stroke patient and the practical limits resulting from it.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- *Correspondence: Salomé Le Franc,
| | | | - Maud Guillen
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Neurology Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Stéphanie Fleck
- Université de Lorraine, CNRS, LORIA, Nancy, France
- EA7312 Laboratoire de Psychologie Ergonomique et Sociale pour l’Expérience Utilisateurs (PERSEUS), Metz, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
9
|
Liu H, Liu W, Fu C, Zhan M. Sinusoidal and nonsinusoidal patterns in amplitude envelope synchronization. Phys Rev E 2022; 105:044209. [PMID: 35590590 DOI: 10.1103/physreve.105.044209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
In this work, amplitude envelope synchronization (AES), as a general phenomenon characterized with highly correlated amplitude envelope but uncorrelated phases and frequencies in coupled nonidentical nonlinear systems, is investigated theoretically and numerically. Two different types of AES patterns, including sinusoidal and nonsinusoidal, are widely observable in coupled periodic and/or chaotic oscillators. They both come from modulation of phase mismatch on amplitude but show different patterns due to different behaviors of phase mismatch. With increase of frequency mismatch, the system tends to crossover from nonsinusoidal to sinusoidal AES. With the aid of synchronization manifold and transverse stability analyses of the AES state, the physical mechanism and scale relations for the AES are well revealed. We expect that all these results could uncover the generality of AES in coupled nonlinear oscillators and help to understand the rich dynamics of phase and amplitude coupling in multidisciplinary fields.
Collapse
Affiliation(s)
- Hanchang Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Weiqing Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chaoxin Fu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng Zhan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, and School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Corsi MC, Chevallier S, Fallani FDV, Yger F. Functional connectivity ensemble method to enhance BCI performance (FUCONE). IEEE Trans Biomed Eng 2022; 69:2826-2838. [PMID: 35226599 DOI: 10.1109/tbme.2022.3154885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery. METHODS A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets. RESULTS Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods. CONCLUSION The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter- and intra-subject variability. SIGNIFICANCE Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.
Collapse
|
11
|
Lee M, Kim YH, Lee SW. Motor Impairment in Stroke Patients is Associated with Network Properties During Consecutive Motor Imagery. IEEE Trans Biomed Eng 2022; 69:2604-2615. [PMID: 35171761 DOI: 10.1109/tbme.2022.3151742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Our study aimed to predict the Fugl-Meyer assessment (FMA) upper limb using network properties during motor imagery using electroencephalography (EEG) signals. METHODS The subjects performed a finger tapping imagery task according to consecutive cues. We measured the weighted phase lag index (wPLI) as functional connectivity and directed transfer function (DTF) as causal connectivity in healthy controls and stroke patients. The network properties based on the wPLI and DTF were calculated. We predicted the FMA upper limb using partial least squares regression. RESULTS A higher DTF in the mu band was observed in stroke patients than in healthy controls. Notably, the difference in local properties at node F3 was negatively correlated with motor impairment in stroke patients. Finally, using significant network properties based on the wPLI and DTF, we predicted motor impairments using the FMA upper limb with a root-mean-square error of 1.68 (R2 = 0.97). This outperformed the state-of-the-art predictors. CONCLUSION These findings demonstrate that network properties based on functional and causal connectivity were highly associated with motor function in stroke patients. SIGNIFICANCE Our network properties can help calculate the predictor of motor impairments in stroke rehabilitation and provide insight into the neural correlates related to motor function based on EEG after reorganization induced by stroke.
Collapse
|
12
|
Yu H, Ba S, Guo Y, Guo L, Xu G. Effects of Motor Imagery Tasks on Brain Functional Networks Based on EEG Mu/Beta Rhythm. Brain Sci 2022; 12:brainsci12020194. [PMID: 35203957 PMCID: PMC8870302 DOI: 10.3390/brainsci12020194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Motor imagery (MI) refers to the mental rehearsal of movement in the absence of overt motor action, which can activate or inhibit cortical excitability. EEG mu/beta oscillations recorded over the human motor cortex have been shown to be consistently suppressed during both the imagination and performance of movements, although the specific effect on brain function remains to be confirmed. In this study, Granger causality (GC) was used to construct the brain functional network of subjects during motor imagery and resting state based on EEG in order to explore the effects of motor imagery on brain function. Parameters of the brain functional network were compared and analyzed, including degree, clustering coefficient, characteristic path length and global efficiency of EEG mu/beta rhythm in different states. The results showed that the clustering coefficient and efficiency of EEG mu/beta rhythm decreased significantly during motor imagery (p < 0.05), while degree distribution and characteristic path length increased significantly (p < 0.05), mainly concentrated in the frontal lobe and sensorimotor area. For the resting state after motor imagery, the changes of brain functional characteristics were roughly similar to those of the task state. Therefore, it is concluded that motor imagery plays an important role in activation of cortical excitability.
Collapse
Affiliation(s)
- Hongli Yu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
- Correspondence: ; Tel.: +86-137-5249-0401
| | - Sidi Ba
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Yuxue Guo
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Lei Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| |
Collapse
|