1
|
Medagedara MH, Ranasinghe A, Lalitharatne TD, Gopura RARC, Nandasiri GK. Advancements in Textile-Based sEMG Sensors for Muscle Fatigue Detection: A Journey from Material Evolution to Technological Integration. ACS Sens 2024; 9:4380-4401. [PMID: 39240819 DOI: 10.1021/acssensors.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Textile-based surface electromyography (sEMG) electrodes have emerged as a prominent tool in muscle fatigue assessment, marking a significant shift toward innovative, noninvasive methods. This review examines the transition from metallic fibers to novel conductive polymers, elastomers, and advanced material-based electrodes, reflecting on the rapid evolution of materials in sEMG sensor technology. It highlights the pivotal role of materials science in enhancing sensor adaptability, signal accuracy, and longevity, crucial for practical applications in health monitoring, while examining the balance of clinical precision with user comfort. Additionally, it maps the global sEMG research landscape of diverse regional contributors and their impact on technological progress, focusing on the integration of Eastern manufacturing prowess with Western technological innovations and exploring both the opportunities and challenges in this global synergy. The integration of such textile-based sEMG innovations with artificial intelligence, nanotechnology, energy harvesting, and IoT connectivity is also anticipated as future prospects. Such advancements are poised to revolutionize personalized preventive healthcare. As the exploration of textile-based sEMG electrodes continues, the transformative potential not only promises to revolutionize integrated wellness and preventive healthcare but also signifies a seamless transition from laboratory innovations to real-world applications in sports medicine, envisioning the future of truly wearable material technologies.
Collapse
Affiliation(s)
- M Hansika Medagedara
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Anuradha Ranasinghe
- School of Mathematics, Computer Science and Engineering, Faculty of Science, Liverpool Hope University, Hope Park - Liverpool L16 9JD, United Kigdom
| | - Thilina D Lalitharatne
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kigdom
| | - R A R C Gopura
- Bionics Laboratory, Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Gayani K Nandasiri
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| |
Collapse
|
2
|
Smit IH, Parmentier JIM, Rovel T, van Dieen J, Serra Bragança FM. Towards standardisation of surface electromyography measurements in the horse: Bipolar electrode location. J Electromyogr Kinesiol 2024; 76:102884. [PMID: 38593582 DOI: 10.1016/j.jelekin.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The use of surface electromyography in the field of animal locomotion has increased considerably over the past decade. However, no consensus exists on the methodology for data collection in horses. This study aimed to start the development of recommendations for bipolar electrode locations to collect surface electromyographic data from horses during dynamic tasks. Data were collected from 21 superficial muscles of three horses during trot on a treadmill using linear electrode arrays. The data were assessed both quantitatively (signal-to-noise ratio (SNR) and coefficient of variation (CoV)) and qualitatively (presence of crosstalk and activation patterns) to compare and select electrode locations for each muscle. For most muscles and horses, the highest SNR values were detected near or cranial/proximal to the central region of the muscle. Concerning the CoV, there were larger differences between muscles and horses than within muscles. Qualitatively, crosstalk was suspected to be present in the signals of twelve muscles but not in all locations in the arrays. With this study, a first attempt is made to develop recommendations for bipolar electrode locations for muscle activity measurements during dynamic contractions in horses. The results may help to improve the reliability and reproducibility of study results in equine biomechanics.
Collapse
Affiliation(s)
- I H Smit
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands.
| | - J I M Parmentier
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands; Pervasive Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7522NB Enschede, the Netherlands
| | - T Rovel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands
| | - J van Dieen
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - F M Serra Bragança
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, the Netherlands; Sleip AI, Birger Jarlsgatan 58, 11426 Stockholm, Sweden
| |
Collapse
|
3
|
Quinn KN, Tian Y, Budde R, Irazoqui PP, Tuffaha S, Thakor NV. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024; 69:134-147. [PMID: 38126120 DOI: 10.1002/mus.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.
Collapse
Affiliation(s)
- Kiara N Quinn
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yucheng Tian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pedro P Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Vidhya CM, Maithani Y, Singh JP. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. BIOSENSORS 2023; 13:679. [PMID: 37504078 PMCID: PMC10377545 DOI: 10.3390/bios13070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
The technology of wearable medical equipment has advanced to the point where it is now possible to monitor the electrocardiogram and electromyogram comfortably at home. The transition from wet Ag/AgCl electrodes to various types of gel-free dry electrodes has made it possible to continuously and accurately monitor the biopotential signals. Fabrics or textiles, which were once meant to protect the human body, have undergone significant development and are now employed as intelligent textile materials for healthcare monitoring. The conductive textile electrodes provide the benefit of being breathable and comfortable. In recent years, there has been a significant advancement in the fabrication of wearable conductive textile electrodes for monitoring biopotential signals. This review paper provides a comprehensive overview of the advances in wearable conductive textile electrodes for biopotential signal monitoring. The paper covers various aspects of the technology, including the electrode design, various manufacturing techniques utilised to fabricate wearable smart fabrics, and performance characteristics. The advantages and limitations of various types of textile electrodes are discussed, and key challenges and future research directions are identified. This will allow them to be used to their fullest potential for signal gathering during physical activities such as running, swimming, and other exercises while being linked into wireless portable health monitoring systems.
Collapse
Affiliation(s)
- C M Vidhya
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogita Maithani
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Yin J, Xu J, Ren TL. Recent Progress in Long-Term Sleep Monitoring Technology. BIOSENSORS 2023; 13:395. [PMID: 36979607 PMCID: PMC10046225 DOI: 10.3390/bios13030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Sleep is an essential physiological activity, accounting for about one-third of our lives, which significantly impacts our memory, mood, health, and children's growth. Especially after the COVID-19 epidemic, sleep health issues have attracted more attention. In recent years, with the development of wearable electronic devices, there have been more and more studies, products, or solutions related to sleep monitoring. Many mature technologies, such as polysomnography, have been applied to clinical practice. However, it is urgent to develop wearable or non-contacting electronic devices suitable for household continuous sleep monitoring. This paper first introduces the basic knowledge of sleep and the significance of sleep monitoring. Then, according to the types of physiological signals monitored, this paper describes the research progress of bioelectrical signals, biomechanical signals, and biochemical signals used for sleep monitoring. However, it is not ideal to monitor the sleep quality for the whole night based on only one signal. Therefore, this paper reviews the research on multi-signal monitoring and introduces systematic sleep monitoring schemes. Finally, a conclusion and discussion of sleep monitoring are presented to propose potential future directions and prospects for sleep monitoring.
Collapse
Affiliation(s)
- Jiaju Yin
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiandong Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Jang Y, Moon JH, Lee C, Lee SM, Kim H, Song GH, Spinks GM, Wallace GG, Kim SJ. A Coiled Carbon Nanotube Yarn-Integrated Surface Electromyography System To Monitor Isotonic and Isometric Movements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45149-45155. [PMID: 36169191 DOI: 10.1021/acsami.2c11811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A surface electromyogram (sEMG) electrode collects electrical currents generated by neuromuscular activity by a noninvasive technique on the skin. It is particularly attractive for wearable systems for various human activities and health care monitoring. However, it remains challenging to discriminate EMG signals from isotonic (concentric/eccentric) and isometric movements. By applying nanotechnology, we provide a coiled carbon nanotube (CNT) yarn-integrated sEMG device to overcome sEMG-based motion recognition. When the arm was contracted at different angles, the sEMG-derived root mean square amplitude signals were constant regardless of the angle of the moving arm. However, the coiled CNT yarn-derived open circuit voltage (OCV) signals proportionally increased when the arm's angle increased, and presented negative and positive values depending on the moving direction of the arm. Moreover, isometric contraction is characterized by the onset of EMG signals without an OCV signal, and isotonic contraction is determined by both EMG signals and OCV signals. Taken together, the integration of EMG and coiled CNT yarn electrodes provides complementary information, including the strength, direction, and degree of muscle movement. Therefore, we suggest that our system has high potential as a wearable system to monitor human motions in industrial and human system applications.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Korea
| | - Ji Hwan Moon
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Chanho Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sung Min Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Heesoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyu Hyeon Song
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Geoffrey M Spinks
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
7
|
Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear. Polymers (Basel) 2022; 14:polym14173641. [PMID: 36080714 PMCID: PMC9460933 DOI: 10.3390/polym14173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ag/AgCl hydrogel electrodes, which are wet electrodes, are generally used to acquire bio-signals non-invasively. Research concerning dry electrodes is ongoing due to the following limitations of wet electrodes: (1) skin irritation and disease when attached for a long time; (2) poor adhesion due to sweat; and (3) considerable cost due to disposable use. Accordingly, electrodes in film, embroidery, and knit forms were manufactured from conductive sheets and conductive yarns, which are typical textile-type dry electrode materials, using different manufacturing methods and conditions. The prepared electrodes were conducted to measure the morphology, surface resistance, skin-electrode impedance, EMG signal acquisition, and analysis. The conductive sheet type electrode exhibited a similar skin-impedance, noise, and muscle activation signal amplitude to the Ag/AgCl gel electrode due to the excellent adhesion and shape stabilization. Embroidery electrodes were manufactured based on two-dimension lock stitch (Em_LS) and three-dimension moss-stitch (Em_MS). More stable EMG signal acquisition than Em_LS was possible when manufactured with Em_MS. The knit electrode was manufactured with the typical structures of plain, purl, and interlock. Although it was possible to acquire EMG signals, considerable noise was generated as the shape and size of the electrodes were changed due to the stretch characteristics of the knit structure. Finally, the applicability of the textile-type dry electrode was confirmed by combining it with a wearable device. More stable and accurate EMG signal acquirement will be possible through more precise parameter control in the future.
Collapse
|
8
|
Spanu A, Taki M, Baldazzi G, Mascia A, Cosseddu P, Pani D, Bonfiglio A. Epidermal Electrodes with Ferrimagnetic/Conductive Properties for Biopotential Recordings. Bioengineering (Basel) 2022; 9:bioengineering9050205. [PMID: 35621483 PMCID: PMC9137760 DOI: 10.3390/bioengineering9050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/04/2022] Open
Abstract
Interfacing ultrathin functional films for epidermal applications with external recording instruments or readout electronics still represents one of the biggest challenges in the field of tattoo electronics. With the aim of providing a convenient solution to this ever-present limitation, in this work we propose an innovative free-standing electrode made of a composite thin film based on the combination of the conductive polymer PEDOT:PSS and ferrimagnetic powder. The proposed epidermal electrode can be directly transferred onto the skin and is structured in two parts, namely a conformal conductive part with a thickness of 3 μm and a ferrimagnetic-conductive part that can be conveniently connected using magnetic connections. The films were characterized for ECG recordings, revealing a performance comparable to that of commercial pre-gelled electrodes in terms of cross-spectral coherence, signal-to-noise ratio, and baseline wandering. These new, conductive, magnetically interfaceable, and free-standing conformal films introduce a novel concept in the domain of tattoo electronics and can set the basis for the development of a future family of epidermal devices and electrodes.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Correspondence:
| | - Mohamad Taki
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Department of Electrical & Electronics Engineering, Lebanese International University, Beirut 146404, Lebanon
| | - Giulia Baldazzi
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Department of Bioengineering, Robotics and System Engineering, University of Genoa, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Antonello Mascia
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
| | - Piero Cosseddu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
| | - Danilo Pani
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Interdepartmental Center for Amyotrophic Lateral Sclerosis and Motor Neuron Diseases, 09100 Cagliari, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Interdepartmental Center for Amyotrophic Lateral Sclerosis and Motor Neuron Diseases, 09100 Cagliari, Italy
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| |
Collapse
|
9
|
Spanu A, Mascia A, Baldazzi G, Fenech-Salerno B, Torrisi F, Viola G, Bonfiglio A, Cosseddu P, Pani D. Parylene C-Based, Breathable Tattoo Electrodes for High-Quality Bio-Potential Measurements. Front Bioeng Biotechnol 2022; 10:820217. [PMID: 35402402 PMCID: PMC8983861 DOI: 10.3389/fbioe.2022.820217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
A breathable tattoo electrode for bio-potential recording based on a Parylene C nanofilm is presented in this study. The proposed approach allows for the fabrication of micro-perforated epidermal submicrometer-thick electrodes that conjugate the unobtrusiveness of Parylene C nanofilms and the very important feature of breathability. The electrodes were fully validated for electrocardiography (ECG) measurements showing performance comparable to that of conventional disposable gelled Ag/AgCl electrodes, with no visible negative effect on the skin even many hours after their application. This result introduces interesting perspectives in the field of epidermal electronics, particularly in applications where critical on-body measurements are involved.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
- *Correspondence: Andrea Spanu, ; Piero Cosseddu,
| | - Antonello Mascia
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Giulia Baldazzi
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering Genova, University of Genova, Cagliari, Italy
| | - Benji Fenech-Salerno
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Felice Torrisi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Graziana Viola
- Division of Cardiology, San Francesco Hospital, Nuoro, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Piero Cosseddu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
- *Correspondence: Andrea Spanu, ; Piero Cosseddu,
| | - Danilo Pani
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| |
Collapse
|