1
|
Chen Y, Xing Z, Chen J, Sun C, Liu Y, Peng C, Peng F, Li D. SIRT1 activation by Ligustrazine ameliorates migraine via the paracrine interaction of microglia and neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156069. [PMID: 39341123 DOI: 10.1016/j.phymed.2024.156069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Neuroinflammation with associated oxidative stress aggravates the pathogenesis and progression of migraine. Ligustrazine (LGZ) is a key component from traditional edible-medicinal herb Ligusticum chuanxiong Hort., and has the effects of anti-platelet aggregation, expanding small arteries, improving microcirculation and promoting blood circulation and removing blood stasis in clinic. HYPOTHESIS/PURPOSE This study aims to investigate the pharmacological effect and mechanism of LGZ in migraine. STUDY DESIGN/METHODS A mouse model of migraine was induced by nitroglycerin (NTG), and LPS/IFN-γ stimulated microglial cell model was conducted to investigate neuroinflammation, the paracrine interactions between microglia and neurons were determined by the co-culture system, and the effect of LGZ on stability of SIRT1 protein was measured by cellular thermal shift assay (CETSA). Whilst, the SIRT1 inhibitor EX527 was used alone or co-treatment with LGZ in vitro or in vivo. RESULTS LGZ significantly attenuated migraine-like behaviors in NTG-induced mice, and ameliorated neuroinflammation and related oxidative damage in brain tissue, but co-treatment with SIRT1 inhibitor EX527 abolished the protective effects of LGZ. Mechanistically, LGZ mitigated neuroinflammation by upregulating SIRT1 expression and subsequently inhibiting the activation of NF-κB pathway in microglia. CETSA indicated that LGZ significantly maintained the stability of SIRT1 protein in microglia. While, in the co-culture system, culture medium from LPS/IFN-γ-treated microglia exacerbated neuronal damage and oxidative stress, which was suppressed by treating LPS/IFN-γ-induced microglia with LGZ, this effect might be related to the activation of Nrf2 signals in neurons. Notably, SIRT1 inhibitor EX527 abrogated the effects of LGZ both in vitro and in vivo. CONCLUSION Consequently, SIRT1 might be an important pharmacological target of LGZ, which attenuates migraine associated neuroinflammation and oxidative stress by interfering the crosstalk between microglia and neurons, thereby relieving migraine.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Alfihed S, Majrashi M, Ansary M, Alshamrani N, Albrahim SH, Alsolami A, Alamari HA, Zaman A, Almutairi D, Kurdi A, Alzaydi MM, Tabbakh T, Al-Otaibi F. Non-Invasive Brain Sensing Technologies for Modulation of Neurological Disorders. BIOSENSORS 2024; 14:335. [PMID: 39056611 PMCID: PMC11274405 DOI: 10.3390/bios14070335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
The non-invasive brain sensing modulation technology field is experiencing rapid development, with new techniques constantly emerging. This study delves into the field of non-invasive brain neuromodulation, a safer and potentially effective approach for treating a spectrum of neurological and psychiatric disorders. Unlike traditional deep brain stimulation (DBS) surgery, non-invasive techniques employ ultrasound, electrical currents, and electromagnetic field stimulation to stimulate the brain from outside the skull, thereby eliminating surgery risks and enhancing patient comfort. This study explores the mechanisms of various modalities, including transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), highlighting their potential to address chronic pain, anxiety, Parkinson's disease, and depression. We also probe into the concept of closed-loop neuromodulation, which personalizes stimulation based on real-time brain activity. While we acknowledge the limitations of current technologies, our study concludes by proposing future research avenues to advance this rapidly evolving field with its immense potential to revolutionize neurological and psychiatric care and lay the foundation for the continuing advancement of innovative non-invasive brain sensing technologies.
Collapse
Affiliation(s)
- Salman Alfihed
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Majed Majrashi
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Muhammad Ansary
- Neuroscience Center Research Unit, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naif Alshamrani
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Shahad H. Albrahim
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulrahman Alsolami
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Hala A. Alamari
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Adnan Zaman
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Dhaifallah Almutairi
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Abdulaziz Kurdi
- Advanced Materials Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mai M. Alzaydi
- Bioengineering Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Thamer Tabbakh
- Microelectronics and Semiconductor Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (S.A.)
| | - Faisal Al-Otaibi
- Neuroscience Center Research Unit, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Bian N, Yuan Y, Li X. Effects of Transcranial Ultrasound Stimulation on Blood Oxygen Metabolism and Brain Rhythms in Nitroglycerin-Induced Migraine Mice. Neuromodulation 2024; 27:824-834. [PMID: 38506766 DOI: 10.1016/j.neurom.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVES In this study, we aimed to investigate the regulatory mechanism of transcranial ultrasound stimulation (TUS) on nitroglycerin-induced migraine in mice. MATERIALS AND METHODS The experiment was divided into four groups, namely, the normal saline control group (n = 9), ultrasound stimulation control group (n = 6), nitroglycerin-induced migraine group (n = 9), and ultrasound stimulation group (n = 9). The behavior, blood oxygen metabolism, and brain rhythm distribution of the four groups were analyzed. RESULTS We found that after TUS, the movement time and speed of mice with migraine are modulated to those of the control groups, and the number of head scratching and grooming events is significantly reduced. TUS increased the deoxygenated hemoglobin, and the power of the 4-to-40 Hz frequency band of local field potentials in the cortex of migraine mice. TUS also decreased the expression of plasma calcitonin gene-related peptide and cortical c-Fos protein. CONCLUSIONS Ultrasound stimulation can regulate brain rhythm and blood oxygen metabolism and reduce migraine symptoms in mice. The regulatory mechanism may be related to reducing calcitonin gene-related peptide in blood vessels.
Collapse
Affiliation(s)
- Nannan Bian
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, China.
| |
Collapse
|
4
|
Qin PP, Jin M, Xia AW, Li AS, Lin TT, Liu Y, Kan RL, Zhang BB, Kranz GS. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105501. [PMID: 38061596 DOI: 10.1016/j.neubiorev.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Low-intensity transcranial ultrasound stimulation (LITUS) is a novel non-invasive neuromodulation technique. We conducted a systematic review to evaluate current evidence on the efficacy and safety of LITUS neuromodulation. Five databases were searched from inception to May 31, 2023. Randomized controlled human trials and controlled animal studies were included. The neuromodulation effects of LITUS on clinical or pre-clinical, neurophysiological, neuroimaging, histological and biochemical outcomes, and adverse events were summarized. In total, 11 human studies and 44 animal studies were identified. LITUS demonstrated therapeutic efficacy in neurological disorders, psychiatric disorders, pain, sleep disorders and hypertension. LITUS-related changes in neuronal structure and cortical activity were found. From histological and biochemical perspectives, prominent findings included suppressing the inflammatory response and facilitating neurogenesis. No adverse effects were reported in controlled animal studies included in our review, while reversible headache, nausea, and vomiting were reported in a few human subjects. Overall, LITUS alleviates various symptoms and modulates associated brain circuits without major side effects. Future research needs to establish a solid therapeutic framework for LITUS.
Collapse
Affiliation(s)
- Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Adam Weili Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ami Sinman Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Tim Tianze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuchen Liu
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Laidi Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Bella Bingbing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Chen R, Du W, Zhang X, Xu R, Jiang W, Zhang C, Yang Y, Zhang H, Xie X, Song D, Yuan Y, Zhang X. Protective effects of low-intensity pulsed ultrasound (LIPUS) against cerebral ischemic stroke in mice by promoting brain vascular remodeling via the inhibition of ROCK1/p-MLC2 signaling pathway. Cereb Cortex 2023; 33:10984-10996. [PMID: 37771006 DOI: 10.1093/cercor/bhad330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Vascular remodeling is essential for patients with cerebral ischemic stroke (CIS). Our previous study proved that low-intensity pulsed ultrasound (LIPUS) could increase cortical hemodynamics. However, the effects and mechanisms of LIPUS on cerebral vascular remodeling after CIS are still unknown. In this study, we applied LIPUS to the mouse brain at 0.5 h after distal middle cerebral artery occlusion (dMCAO) and subsequently daily for a stimulation time of 30 min. Results showed that compared with the dMCAO group, LIPUS markedly increased cerebral blood flow (CBF), reduced brain swelling, and improved functional recovery at day 3 after CIS. LIPUS promoted leptomeningeal vasculature remodeling, enlarged vascular diameter, and increased the average vessel length and density at day 3 after CIS. Proteomic analysis highlighted that LIPUS mainly participated in the regulation of actin cytoskeleton pathway. Rho kinase 1 (ROCK1) was downregulated by LIPUS and participated in regulation of actin cytoskeleton. Subsequently, we verified that ROCK1 was mainly expressed in pericytes. Furthermore, we demonstrated that LIPUS inhibited ROCK1/p-MLC2 signaling pathway after CIS, which had positive effects on vascular remodeling and cerebral blood circulation. In conclusion, our preliminary study revealed the vascular remodeling effects and mechanism of LIPUS in CIS, provided evidence for potential clinical application of LIPUS.
Collapse
Affiliation(s)
- Rong Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Wei Du
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xiao Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Renhao Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Wei Jiang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Huiran Zhang
- Department of Biological Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaoli Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Degang Song
- Department of Neurology, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, Hebei 066000, China
| | - Yi Yuan
- School of Electrical Engineering, Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, Hebei 050011, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|