Feichtenhofer C, Pinz A, Wildes RP. Dynamic Scene Recognition with Complementary Spatiotemporal Features.
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2016;
38:2389-2401. [PMID:
27824581 DOI:
10.1109/tpami.2016.2526008]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents Dynamically Pooled Complementary Features (DPCF), a unified approach to dynamic scene recognition that analyzes a short video clip in terms of its spatial, temporal and color properties. The complementarity of these properties is preserved through all main steps of processing, including primitive feature extraction, coding and pooling. In the feature extraction step, spatial orientations capture static appearance, spatiotemporal oriented energies capture image dynamics and color statistics capture chromatic information. Subsequently, primitive features are encoded into a mid-level representation that has been learned for the task of dynamic scene recognition. Finally, a novel dynamic spacetime pyramid is introduced. This dynamic pooling approach can handle both global as well as local motion by adapting to the temporal structure, as guided by pooling energies. The resulting system provides online recognition of dynamic scenes that is thoroughly evaluated on the two current benchmark datasets and yields best results to date on both datasets. In-depth analysis reveals the benefits of explicitly modeling feature complementarity in combination with the dynamic spacetime pyramid, indicating that this unified approach should be well-suited to many areas of video analysis.
Collapse