1
|
Lučić M, Allport T, Clarke TA, Williams LJ, Wilson MT, Chaplin AK, Worrall JAR. The oligomeric states of dye-decolorizing peroxidases from Streptomyces lividans and their implications for mechanism of substrate oxidation. Protein Sci 2024; 33:e5073. [PMID: 38864770 PMCID: PMC11168072 DOI: 10.1002/pro.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
A common evolutionary mechanism in biology to drive function is protein oligomerization. In prokaryotes, the symmetrical assembly of repeating protein units to form homomers is widespread, yet consideration in vitro of whether such assemblies have functional or mechanistic consequences is often overlooked. Dye-decolorizing peroxidases (DyPs) are one such example, where their dimeric α + β barrel units can form various oligomeric states, but the oligomer influence, if any, on mechanism and function has received little attention. In this work, we have explored the oligomeric state of three DyPs found in Streptomyces lividans, each with very different mechanistic behaviors in their reactions with hydrogen peroxide and organic substrates. Using analytical ultracentrifugation, we reveal that except for one of the A-type DyPs where only a single sedimenting species is detected, oligomer states ranging from homodimers to dodecamers are prevalent in solution. Using cryo-EM on preparations of the B-type DyP, we determined a 3.02 Å resolution structure of a hexamer assembly that corresponds to the dominant oligomeric state in solution as determined by analytical ultracentrifugation. Furthermore, cryo-EM data detected sub-populations of higher-order oligomers, with one of these formed by an arrangement of two B-type DyP hexamers to give a dodecamer assembly. Our solution and structural insights of these oligomer states provide a new framework to consider previous mechanistic studies of these DyP members and are discussed in terms of long-range electron transfer for substrate oxidation and in the "storage" of oxidizable equivalents on the heme until a two-electron donor is available.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life SciencesUniversity of EssexColchesterUK
| | - Thomas Allport
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | | | | | | | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | | |
Collapse
|
2
|
Košenina S, Škerlová J, Zhang S, Dong M, Stenmark P. The cryo-EM structure of the BoNT/Wo-NTNH complex reveals two immunoglobulin-like domains. FEBS J 2024; 291:676-689. [PMID: 37746829 DOI: 10.1111/febs.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.
Collapse
Affiliation(s)
- Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
3
|
Sun WS, Lassinantti L, Järvå M, Schmitt A, ter Beek J, Berntsson RPA. Structural foundation for the role of enterococcal PrgB in conjugation, biofilm formation, and virulence. eLife 2023; 12:RP84427. [PMID: 37860966 PMCID: PMC10588982 DOI: 10.7554/elife.84427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.
Collapse
Affiliation(s)
- Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Lena Lassinantti
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Michael Järvå
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Andreas Schmitt
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| |
Collapse
|
4
|
Hardwick SW, Stavridi AK, Chirgadze DY, De Oliveira TM, Charbonnier JB, Ropars V, Meek K, Blundell TL, Chaplin AK. Cryo-EM structure of a DNA-PK trimer: higher order oligomerisation in NHEJ. Structure 2023; 31:895-902.e3. [PMID: 37311458 DOI: 10.1016/j.str.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The ability of humans to maintain the integrity of the genome is imperative for cellular survival. DNA double-strand breaks (DSBs) are considered the most critical type of DNA lesion, which can ultimately lead to diseases including cancer. Non-homologous end joining (NHEJ) is one of two core mechanisms utilized to repair DSBs. DNA-PK is a key component in this process and has recently been shown to form alternate long-range synaptic dimers. This has led to the proposal that these complexes can be formed before transitioning to a short-range synaptic complex. Here we present cryo-EM data representing an NHEJ supercomplex consisting of a trimer of DNA-PK in complex with XLF, XRCC4, and DNA Ligase IV. This trimer represents a complex of both long-range synaptic dimers. We discuss the potential role of the trimeric structure, and possible higher order oligomers, as structural intermediates in the NHEJ mechanism, or as functional DNA repair centers.
Collapse
Affiliation(s)
- Steven W Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, CB2 1GA Cambridge, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, CB2 1GA Cambridge, UK
| | - Dimitri Y Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, CB2 1GA Cambridge, UK
| | | | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, CB2 1GA Cambridge, UK
| | - Amanda K Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
5
|
Human DNA-dependent protein kinase activation mechanism. Nat Struct Mol Biol 2023; 30:140-147. [PMID: 36604499 PMCID: PMC9935390 DOI: 10.1038/s41594-022-00881-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023]
Abstract
DNA-dependent protein kinase (DNA-PK), a multicomponent complex including the DNA-PK catalytic subunit and Ku70/80 heterodimer together with DNA, is central to human DNA damage response and repair. Using a DNA-PK-selective inhibitor (M3814), we identified from one dataset two cryo-EM structures of the human DNA-PK complex in different states, the intermediate state and the active state. Here we show that activation of the kinase is regulated through conformational changes caused by the binding ligand and the string region (residues 802-846) of the DNA-PK catalytic subunit, particularly the helix-hairpin-helix motif (residues 816-836) that interacts with DNA. These observations demonstrate the regulatory role of the ligand and explain why DNA-PK is DNA dependent. Cooperation and coordination among binding partners, disordered flexible regions and mechanically flexible HEAT repeats modulate the activation of the kinase. Together with previous findings, these results provide a better molecular understanding of DNA-PK catalysis.
Collapse
|
6
|
Abstract
Cryo-electron microscopy (CryoEM) has become a vital technique in structural biology. It is an interdisciplinary field that takes advantage of advances in biochemistry, physics, and image processing, among other disciplines. Innovations in these three basic pillars have contributed to the boosting of CryoEM in the past decade. This work reviews the main contributions in image processing to the current reconstruction workflow of single particle analysis (SPA) by CryoEM. Our review emphasizes the time evolution of the algorithms across the different steps of the workflow differentiating between two groups of approaches: analytical methods and deep learning algorithms. We present an analysis of the current state of the art. Finally, we discuss the emerging problems and challenges still to be addressed in the evolution of CryoEM image processing methods in SPA.
Collapse
Affiliation(s)
- Jose Luis Vilas
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro
Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
7
|
Mamizu N, Yasunaga T. Estimation of Projection Parameter Distribution and Initial Model Generation in Single-Particle Analysis. Microscopy (Oxf) 2022; 71:347-356. [PMID: 35904535 DOI: 10.1093/jmicro/dfac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study focused on the problem of projection parameter search in 3D reconstruction using single-particle analysis. We treated the sampling distribution for the parameter search as a prior distribution and designed a probabilistic model for efficient parameter estimation. Using our method, we showed that it is possible to perform 3D reconstruction from synthetic and actual electron microscope images using an initial model, and to generate the initial model itself. We also examined whether the optimization function used in the stochastic gradient descent method can be applied with loose constraints to improve the convergence of initial model generation and confirmed the effect. In order to investigate the advantage of generating a smooth sampling distribution from the stochastic model, we compared the distribution of estimated projection directions with the conventional method of performing a global search using spherical gridding. As a result, our method, which is simple in both mathematical model and implementation, showed no algorithmic artifacts.
Collapse
Affiliation(s)
- Nobuya Mamizu
- Imaging Technology Division, System in Frontier Inc., 2-8-3 Shinsuzuharu Bldg.4F Akebono-cho Tachikawa-shi, Tokyo 190-0012
| | - Takuo Yasunaga
- Department of Physics and Information Technology, Kyushu Institute of Technology Faculty of Computer Science and Systems Engineering, 680-4 Kawazu Iizuka-shi, Fukuoka 820-8502
| |
Collapse
|
8
|
Gilles MA, Singer A. A molecular prior distribution for Bayesian inference based on Wilson statistics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106830. [PMID: 35537297 PMCID: PMC9233040 DOI: 10.1016/j.cmpb.2022.106830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Wilson statistics describe well the power spectrum of proteins at high frequencies. Therefore, it has found several applications in structural biology, e.g., it is the basis for sharpening steps used in cryogenic electron microscopy (cryo-EM). A recent paper gave the first rigorous proof of Wilson statistics based on a formalism of Wilson's original argument. This new analysis also leads to statistical estimates of the scattering potential of proteins that reveal a correlation between neighboring Fourier coefficients. Here we exploit these estimates to craft a novel prior that can be used for Bayesian inference of molecular structures. METHODS We describe the properties of the prior and the computation of its hyperparameters. We then evaluate the prior on two synthetic linear inverse problems, and compare against a popular prior in cryo-EM reconstruction at a range of SNRs. RESULTS We show that the new prior effectively suppresses noise and fills-in low SNR regions in the spectral domain. Furthermore, it improves the resolution of estimates on the problems considered for a wide range of SNR and produces Fourier Shell Correlation curves that are insensitive to masking effects. CONCLUSIONS We analyze the assumptions in the model, discuss relations to other regularization strategies, and postulate on potential implications for structure determination in cryo-EM.
Collapse
Affiliation(s)
- Marc Aurèle Gilles
- Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States.
| | - Amit Singer
- Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States
| |
Collapse
|
9
|
Sorzano COS, Jiménez-Moreno A, Maluenda D, Martínez M, Ramírez-Aportela E, Krieger J, Melero R, Cuervo A, Conesa J, Filipovic J, Conesa P, del Caño L, Fonseca YC, Jiménez-de la Morena J, Losana P, Sánchez-García R, Strelak D, Fernández-Giménez E, de Isidro-Gómez FP, Herreros D, Vilas JL, Marabini R, Carazo JM. On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy. Acta Crystallogr D Struct Biol 2022; 78:410-423. [PMID: 35362465 PMCID: PMC8972802 DOI: 10.1107/s2059798322001978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) has become a well established technique to elucidate the 3D structures of biological macromolecules. Projection images from thousands of macromolecules that are assumed to be structurally identical are combined into a single 3D map representing the Coulomb potential of the macromolecule under study. This article discusses possible caveats along the image-processing path and how to avoid them to obtain a reliable 3D structure. Some of these problems are very well known in the community. These may be referred to as sample-related (such as specimen denaturation at interfaces or non-uniform projection geometry leading to underrepresented projection directions). The rest are related to the algorithms used. While some have been discussed in depth in the literature, such as the use of an incorrect initial volume, others have received much less attention. However, they are fundamental in any data-analysis approach. Chiefly among them, instabilities in estimating many of the key parameters that are required for a correct 3D reconstruction that occur all along the processing workflow are referred to, which may significantly affect the reliability of the whole process. In the field, the term overfitting has been coined to refer to some particular kinds of artifacts. It is argued that overfitting is a statistical bias in key parameter-estimation steps in the 3D reconstruction process, including intrinsic algorithmic bias. It is also shown that common tools (Fourier shell correlation) and strategies (gold standard) that are normally used to detect or prevent overfitting do not fully protect against it. Alternatively, it is proposed that detecting the bias that leads to overfitting is much easier when addressed at the level of parameter estimation, rather than detecting it once the particle images have been combined into a 3D map. Comparing the results from multiple algorithms (or at least, independent executions of the same algorithm) can detect parameter bias. These multiple executions could then be averaged to give a lower variance estimate of the underlying parameters.
Collapse
Affiliation(s)
- C. O. S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - A. Jiménez-Moreno
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Maluenda
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - M. Martínez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - E. Ramírez-Aportela
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Krieger
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - R. Melero
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - A. Cuervo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | | | - P. Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - L. del Caño
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Y. C. Fonseca
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Jiménez-de la Morena
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - P. Losana
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - R. Sánchez-García
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Strelak
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
- Masaryk University, Brno, Czech Republic
| | - E. Fernández-Giménez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - F. P. de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Herreros
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. L. Vilas
- School of Engineering and Applied Science, Yale University, New Haven, CT 06520-829, USA
| | - R. Marabini
- Escuela Politecnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J. M. Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
10
|
Mechanisms of inhibition and activation of extrasynaptic αβ GABA A receptors. Nature 2022; 602:529-533. [PMID: 35140402 PMCID: PMC8850191 DOI: 10.1038/s41586-022-04402-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, β-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αβ, α4βδ, α6βδ and α5βγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1βγ, α2βγ and α3βγ receptor responses5,7–12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αβ GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA–Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αβ receptors that adapt them to a role in tonic signalling. Cryo-electron microscopy structures are used to identify mechanisms underlying distinct features of extrasynaptic type A γ-aminobutyric acid receptors.
Collapse
|
11
|
Wu JG, Yan Y, Zhang DX, Liu BW, Zheng QB, Xie XL, Liu SQ, Ge SX, Hou ZG, Xia NS. Machine Learning for Structure Determination in Single-Particle Cryo-Electron Microscopy: A Systematic Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:452-472. [PMID: 34932487 DOI: 10.1109/tnnls.2021.3131325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, single-particle cryo-electron microscopy (cryo-EM) has become an indispensable method for determining macromolecular structures at high resolution to deeply explore the relevant molecular mechanism. Its recent breakthrough is mainly because of the rapid advances in hardware and image processing algorithms, especially machine learning. As an essential support of single-particle cryo-EM, machine learning has powered many aspects of structure determination and greatly promoted its development. In this article, we provide a systematic review of the applications of machine learning in this field. Our review begins with a brief introduction of single-particle cryo-EM, followed by the specific tasks and challenges of its image processing. Then, focusing on the workflow of structure determination, we describe relevant machine learning algorithms and applications at different steps, including particle picking, 2-D clustering, 3-D reconstruction, and other steps. As different tasks exhibit distinct characteristics, we introduce the evaluation metrics for each task and summarize their dynamics of technology development. Finally, we discuss the open issues and potential trends in this promising field.
Collapse
|
12
|
Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs. Nature 2022; 601:643-648. [PMID: 34987222 PMCID: PMC8791830 DOI: 10.1038/s41586-021-04274-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023]
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5′-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets. Cryo-electron microscopy structures of DNA-dependent protein kinase catalytic subunit bound to ATPγS and four inhibitors (wortmannin, NU7441, AZD7648 and M3814) provide molecular details and insights useful for drug design.
Collapse
|
13
|
Chaplin AK, Hardwick SW, Stavridi AK, Buehl CJ, Goff NJ, Ropars V, Liang S, De Oliveira TM, Chirgadze DY, Meek K, Charbonnier JB, Blundell TL. Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Mol Cell 2021; 81:3400-3409.e3. [PMID: 34352203 PMCID: PMC9006396 DOI: 10.1016/j.molcel.2021.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher J Buehl
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Shikang Liang
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
14
|
Sorzano COS, Jiménez-Moreno A, Maluenda D, Ramírez-Aportela E, Martínez M, Cuervo A, Melero R, Conesa JJ, Sánchez-García R, Strelak D, Filipovic J, Fernández-Giménez E, de Isidro-Gómez F, Herreros D, Conesa P, Del Caño L, Fonseca Y, de la Morena JJ, Macías JR, Losana P, Marabini R, Carazo JM. Image Processing in Cryo-Electron Microscopy of Single Particles: The Power of Combining Methods. Methods Mol Biol 2021; 2305:257-289. [PMID: 33950394 DOI: 10.1007/978-1-0716-1406-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule. In this chapter, we illustrate this whole processing pipeline putting in value the strength of "meta algorithms," which are the combination of several algorithms, each one with different mathematical rationale, in order to distinguish correctly from incorrectly estimated parameters. We show how this strategy leads to superior performance of the whole pipeline as well as more confident assessments about the reconstructed structures. The "meta algorithms" strategy is common to many fields and, in particular, it has provided excellent results in bioinformatics. We illustrate this combination using the workflow engine, Scipion.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Cuervo
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | - Robert Melero
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | - David Strelak
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | | | | | - Pablo Conesa
- National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Méndez J, Garduño E, Carazo JM, S Sorzano CO. Identification of incorrectly oriented particles in cryo-EM single particle analysis. J Struct Biol 2021; 213:107771. [PMID: 34324977 DOI: 10.1016/j.jsb.2021.107771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/23/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022]
Abstract
The quality of a 3D map produced by the single-particle analysis method is highly dependent on an accurate assignment of orientations to the many experimental images. However, the problem's complexity implies the presence of several local minima in the optimized goal functions. Consequently, validation methods to confirm the angular assignment are very useful to yield higher-resolution 3D maps. In this work, we present a graph-signal-processing-based methodology that analyzes the correlation landscape as a function of the orientation, an approach allowing the estimation of the assigned orientations' reliability. Using this method, we may identify low-reliability images that probably incorrectly contribute to the final 3D reconstruction.
Collapse
Affiliation(s)
- Jeison Méndez
- Posgrado en Ingeniería Eléctrica, Universidad Nacional Autónoma de México, Cd.Universitaria, C.P.04510, Mexico City, Mexico.
| | - Edgar Garduño
- Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - José María Carazo
- National Center of Biotechnology, CSIC, Campus Univ. Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - Carlos Oscar S Sorzano
- Univ. San Pablo CEU, Campus Urb. Montepríncipe s/n, 28668, Boadilla del Monte, Madrid, Spain; National Center of Biotechnology, CSIC, Campus Univ. Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
16
|
Punjani A, Fleet DJ. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J Struct Biol 2021; 213:107702. [PMID: 33582281 DOI: 10.1016/j.jsb.2021.107702] [Citation(s) in RCA: 498] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Single particle cryo-EM excels in determining static structures of protein molecules, but existing 3D reconstruction methods have been ineffective in modelling flexible proteins. We introduce 3D variability analysis (3DVA), an algorithm that fits a linear subspace model of conformational change to cryo-EM data at high resolution. 3DVA enables the resolution and visualization of detailed molecular motions of both large and small proteins, revealing new biological insight from single particle cryo-EM data. Experimental results demonstrate the ability of 3DVA to resolve multiple flexible motions of α-helices in the sub-50 kDa transmembrane domain of a GPCR complex, bending modes of a sodium ion channel, five types of symmetric and symmetry-breaking flexibility in a proteasome, large motions in a spliceosome complex, and discrete conformational states of a ribosome assembly. 3DVA is implemented in the cryoSPARC software package.
Collapse
Affiliation(s)
- Ali Punjani
- Department of Computer Sciences, University of Toronto M5S 3G4, Canada; Vector Institute, 710-661 University Ave., Toronto M5G 1M1, Canada; Structura Biotechnology Inc., 129-100 College Ave., Toronto M5G 1L5, Canada.
| | - David J Fleet
- Department of Computer Sciences, University of Toronto M5S 3G4, Canada; Vector Institute, 710-661 University Ave., Toronto M5G 1M1, Canada.
| |
Collapse
|
17
|
Munir A, Wilson MT, Hardwick SW, Chirgadze DY, Worrall JAR, Blundell TL, Chaplin AK. Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure 2021; 29:899-912.e4. [PMID: 33444527 PMCID: PMC8355310 DOI: 10.1016/j.str.2020.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance. A cryo-EM structure to 2.7 Å resolution of M. tuberculosis KatG with isoniazid Cryo-EM is able to visualize multiple dynamic binding modes of isoniazid to KatG Structural disorder in isoniazid resistance mutations is observed Structural disorder of the resistance mutations results in the lack of heme retention
Collapse
Affiliation(s)
- Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
18
|
Song X, Shi Y, Ding W, Niu T, Sun L, Tan Y, Chen Y, Shi J, Xiong Q, Huang X, Xiao S, Zhu Y, Cheng C, Fu ZF, Liu ZJ, Peng G. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Nat Commun 2021; 12:141. [PMID: 33420048 PMCID: PMC7794242 DOI: 10.1038/s41467-020-20401-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses spike (S) glycoproteins mediate viral entry into host cells by binding to host receptors. However, how the S1 subunit undergoes conformational changes for receptor recognition has not been elucidated in Alphacoronavirus. Here, we report the cryo-EM structures of the HCoV-229E S trimer in prefusion state with two conformations. The activated conformation may pose the potential exposure of the S1-RBDs by decreasing of the interaction area between the S1-RBDs and the surrounding S1-NTDs and S1-RBDs compared to the closed conformation. Furthermore, structural comparison of our structures with the previously reported HCoV-229E S structure showed that the S trimers trended to open the S2 subunit from the closed conformation to open conformation, which could promote the transition from pre- to postfusion. Our results provide insights into the mechanisms involved in S glycoprotein-mediated Alphacoronavirus entry and have implications for vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Xiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Ding
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiqi Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xiaojun Huang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Zhi-Jie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China. .,iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
19
|
He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel BD, Yu Z, Jonikas MC. The structural basis of Rubisco phase separation in the pyrenoid. NATURE PLANTS 2020; 6:1480-1490. [PMID: 33230314 PMCID: PMC7736253 DOI: 10.1038/s41477-020-00811-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hui-Ting Chou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Therapeutic Discovery, Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Doreen Matthies
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Antonio Martinez-Sanchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Port
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Guanhua He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vivian K Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
20
|
Dimers of DNA-PK create a stage for DNA double-strand break repair. Nat Struct Mol Biol 2020; 28:13-19. [DOI: 10.1038/s41594-020-00517-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
|
21
|
Zehni M, Donati L, Soubies E, Zhao ZJ, Unser M. Joint Angular Refinement and Reconstruction for Single-Particle Cryo-EM. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 29:6151-6163. [PMID: 32248108 DOI: 10.1109/tip.2020.2984313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) reconstructs the three-dimensional (3D) structure of biomolecules from a large set of 2D projection images with random and unknown orientations. A crucial step in the single-particle cryo-EM pipeline is 3D refinement, which resolves a highresolution 3D structure from an initial approximate volume by refining the estimation of the orientation of each projection. In this work, we propose a new approach that refines the projection angles on the continuum. We formulate the optimization problem over the density map and the orientations jointly. The density map is updated using the efficient alternating-direction method of multipliers, while the orientations are updated through a semicoordinate- wise gradient descent for which we provide an explicit derivation of the gradient. Our method eliminates the requirement for a fine discretization of the orientation space and does away with the classical but computationally expensive templatematching step. Numerical results demonstrate the feasibility and performance of our approach compared to several baselines.
Collapse
|
22
|
Ridley C, Lockhart-Cairns MP, Collins RF, Jowitt TA, Subramani DB, Kesimer M, Baldock C, Thornton DJ. The C-terminal dimerization domain of the respiratory mucin MUC5B functions in mucin stability and intracellular packaging before secretion. J Biol Chem 2019; 294:17105-17116. [PMID: 31570524 PMCID: PMC6851316 DOI: 10.1074/jbc.ra119.010771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Mucin 5B (MUC5B) has an essential role in mucociliary clearance that protects the pulmonary airways. Accordingly, knowledge of MUC5B structure and its interactions with itself and other proteins is critical to better understand airway mucus biology and improve the management of lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). The role of an N-terminal multimerization domain in the supramolecular organization of MUC5B has been previously described, but less is known about its C-terminal dimerization domain. Here, using cryogenic electron microscopy (cryo-EM) and small-angle X-ray scattering (SAXS) analyses of recombinant disulfide-linked dimeric MUC5B dimerization domain we identified an asymmetric, elongated twisted structure, with a double globular base. We found that the dimerization domain is more resistant to disruption than the multimerization domain suggesting the twisted structure of the dimerization domain confers additional stability to MUC5B polymers. Size-exclusion chromatography-multiangle light scattering (SEC-MALS), SPR-based biophysical analyses and microscale thermophoresis of the dimerization domain disclosed no further assembly, but did reveal reversible, calcium-dependent interactions between the dimerization and multimerization domains that were most active at acidic pH, suggesting that these domains have a role in MUC5B intragranular organization. In summary, our results suggest a role for the C-terminal dimerization domain of MUC5B in compaction of mucin chains during granular packaging via interactions with the N-terminal multimerization domain. Our findings further suggest that the less stable multimerization domain provides a potential target for mucin depolymerization to remove mucus plugs in COPD and other lung pathologies.
Collapse
Affiliation(s)
- Caroline Ridley
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Richard F Collins
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Durai B Subramani
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7362
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7362
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom .,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Division of Cell-Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom .,Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
23
|
Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Curr Opin Struct Biol 2018; 52:127-145. [PMID: 30509756 DOI: 10.1016/j.sbi.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Electron cryomicroscopy (cryoEM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize macromolecular complexes such as ribosomes, viruses, and ion channels. Determination of structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryoEM a scientific rebirth. As a result of these technological advances image processing and analysis have yielded molecular structures at atomic resolution. Nevertheless there continue to be challenges in image processing, and in this article we will touch on the most essential in order to derive an accurate three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. We will then highlight new approaches for each image processing subproblem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking.
Collapse
|
24
|
Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing integrin extension. Nat Struct Mol Biol 2018; 25:698-704. [PMID: 30061598 PMCID: PMC6214843 DOI: 10.1038/s41594-018-0093-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Integrins are conformationally flexible cell surface receptors that survey the extracellular environment for their cognate ligands. Interactions with ligands are thought to be linked to global structural rearrangements involving transitions between bent, extended-closed and -open forms. Thus far, structural details are lacking for integrins in the extended conformation due to extensive flexibility between the headpiece and legs within this conformation. Here we present single-particle electron cryo-microscopy structures of human αvβ8 integrin in the extended-closed conformation, which has been considered to be a low-affinity intermediate. Our structures show the headpiece rotating about a flexible αv-knee, suggesting a ligand surveillance mechanism for integrins in their extended-closed form. Our model predicts that the extended conformation is mainly stabilized by an interface formed between flexible loops in the upper and lower domains of the αv-leg. Confirming these findings with the αvβ3 integrin suggests that our model of stabilizing the extended-closed conformation is generalizable to other integrins.
Collapse
|
25
|
Cossio P, Hummer G. Likelihood-based structural analysis of electron microscopy images. Curr Opin Struct Biol 2018; 49:162-168. [PMID: 29579548 DOI: 10.1016/j.sbi.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/24/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
Likelihood-based analysis of single-particle electron microscopy images has contributed much to the recent improvements in resolution. By treating particle orientations and classes probabilistically, uncertainties in the reconstruction process are explicitly accounted for, and the risk of bias towards the initial model is diminished. As a result, the quality and reliability of the reconstructions have greatly improved at manageable computational cost. Likelihood-based analysis of electron microscopy images also offers a route to direct coordinate refinement for dynamic systems, as an alternative to 3D density reconstruction. Here, we review recent developments in the algorithms used for reconstructions of high-resolution maps, and in the integrative framework of combining likelihood methods with simulations to address conformational variability in cryo-electron microscopy.
Collapse
Affiliation(s)
- Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 2017; 359:228-232. [PMID: 29217581 DOI: 10.1126/science.aar4510] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Collapse
Affiliation(s)
- Henriette E Autzen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.,Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Daniel Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods 2017; 14:793-796. [PMID: 28671674 DOI: 10.1038/nmeth.4347] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
We present a strategy for tackling preferred specimen orientation in single-particle cryogenic electron microscopy by employing tilts during data collection. We also describe a tool to quantify the resulting directional resolution using 3D Fourier shell correlation volumes. We applied these methods to determine the structures at near-atomic resolution of the influenza hemagglutinin trimer, which adopts a highly preferred specimen orientation, and of ribosomal biogenesis intermediates, which adopt moderately preferred orientations.
Collapse
|