1
|
Dimitrakakis E, Dwyer G, Newall N, Khan DZ, Marcus HJ, Stoyanov D. Handheld robotic device for endoscopic neurosurgery: system integration and pre-clinical evaluation. Front Robot AI 2024; 11:1400017. [PMID: 38899064 PMCID: PMC11186318 DOI: 10.3389/frobt.2024.1400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
The Expanded Endoscopic Endonasal Approach, one of the best examples of endoscopic neurosurgery, allows access to the skull base through the natural orifice of the nostril. Current standard instruments lack articulation limiting operative access and surgeon dexterity, and thus, could benefit from robotic articulation. In this study, a handheld robotic system with a series of detachable end-effectors for this approach is presented. This system is comprised of interchangeable articulated 2/3 degrees-of-freedom 3 mm instruments that expand the operative workspace and enhance the surgeon's dexterity, an ergonomically designed handheld controller with a rotating joystick-body that can be placed at the position most comfortable for the user, and the accompanying control box. The robotic instruments were experimentally evaluated for their workspace, structural integrity, and force-delivery capabilities. The entire system was then tested in a pre-clinical context during a phantom feasibility test, followed up by a cadaveric pilot study by a cohort of surgeons of varied clinical experience. Results from this series of experiments suggested enhanced dexterity and adequate robustness that could be associated with feasibility in a clinical context, as well as improvement over current neurosurgical instruments.
Collapse
Affiliation(s)
- Emmanouil Dimitrakakis
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
- Panda Surgical Limited, London, United Kingdom
| | | | - Nicola Newall
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Danyal Z. Khan
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Hani J. Marcus
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
- Panda Surgical Limited, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
- Panda Surgical Limited, London, United Kingdom
| |
Collapse
|
2
|
Wu Z, Chen D, Pan C, Zhang G, Chen S, Shi J, Meng C, Zhao X, Tao B, Chen D, Liu W, Ding H, Tang Z. Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions. Ann Biomed Eng 2023; 51:1933-1941. [PMID: 37405558 PMCID: PMC10409846 DOI: 10.1007/s10439-023-03295-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and disability, and there are no proven medical treatments that can improve the functional outcome of ICH patients. Robot-assisted neurosurgery is a significant advancement in the development of minimally invasive surgery for ICH. This review encompasses the latest advances and future directions of surgical robots for ICH. First, three robotic systems for neurosurgery applied to ICH are illustrated. Second, the key technologies of robot-assisted surgery for ICH are introduced in aspects of stereotactic technique and navigation, the puncture instrument, and hematoma evacuation. Finally, the limitations of current surgical robots are summarized, and the possible development direction is discussed, which is named "multisensor fusion and intelligent aspiration control of minimally invasive surgical robot for ICH". It is expected that the new generation of surgical robots for ICH will facilitate quantitative, precise, individualized, standardized treatment strategies for ICH.
Collapse
Affiliation(s)
- Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Shi
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cai Meng
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Xingwei Zhao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Tao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Diansheng Chen
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd, Beijing, 102299, China
| | - Han Ding
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Learning Non-Parametric Models in Real Time via Online Generalized Product of Experts. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3190809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Robotic Handle Prototypes for Endoscopic Endonasal Skull Base Surgery: Pre-clinical Randomised Controlled Trial of Performance and Ergonomics. Ann Biomed Eng 2022; 50:549-563. [PMID: 35258744 PMCID: PMC9001398 DOI: 10.1007/s10439-022-02942-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Endoscopic endonasal skull base surgery is a promising alternative to transcranial approaches. However, standard instruments lack articulation, and thus, could benefit from robotic technologies. The aim of this study was to develop an ergonomic handle for a handheld robotic instrument intended to enhance this procedure. Two different prototypes were developed based on ergonomic guidelines within the literature. The first is a forearm-mounted handle that maps the surgeon's wrist degrees-of-freedom to that of the robotic end-effector; the second is a joystick-and-trigger handle with a rotating body that places the joystick to the position most comfortable for the surgeon. These handles were incorporated into a custom-designed surgical virtual simulator and were assessed for their performance and ergonomics when compared with a standard neurosurgical grasper. The virtual task was performed by nine novices with all three devices as part of a randomised crossover user-study. Their performance and ergonomics were evaluated both subjectively by themselves and objectively by a validated observational checklist. Both handles outperformed the standard instrument with the rotating joystick-body handle offering the most substantial improvement in terms of balance between performance and ergonomics. Thus, it is deemed the more suitable device to drive instrumentation for endoscopic endonasal skull base surgery.
Collapse
|
5
|
Yang C, Guo S, Bao X. An Isomorphic Interactive Device for the Interventional Surgical Robot after In Vivo Study. MICROMACHINES 2022; 13:mi13010111. [PMID: 35056276 PMCID: PMC8778927 DOI: 10.3390/mi13010111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Interventional surgical robots are widely used in neurosurgery to improve surgeons’ working environment and surgical safety. Based on the actual operational needs of surgeons’ feedback during preliminary in vivo experiments, this paper proposed an isomorphic interactive master controller for the master–slave interventional surgical robot. The isomorphic design of the controller allows surgeons to utilize their surgical skills during remote interventional surgeries. The controller uses the catheter and guidewire as the operating handle, the same as during actual surgeries. The collaborative operational structure design and the working methods followed the clinical operational skills. The linear force feedback and torque feedback devices were designed to improve the safety of surgeries under remote operating conditions. An eccentric force compensation was conducted to achieve accurate force feedback. Several experiments were carried out, such as calibration experiments, master–slave control performance evaluation experiments, and operation comparison experiments on the novel and previously used controllers. The experimental results show that the proposed controller can perform complex operations in remote surgery applications and has the potential for further animal experiment evaluations.
Collapse
Affiliation(s)
- Cheng Yang
- School of Automation, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuxiang Guo
- School of Automation, Beijing Institute of Technology, Beijing 100081, China;
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 760-8521, Japan
- Correspondence: (S.G.); (X.B.)
| | - Xianqiang Bao
- Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (S.G.); (X.B.)
| |
Collapse
|