1
|
Shan Y, Zhao Y, Wang H, Dong L, Pei C, Jin Z, Sun Y, Liu T. Variable stiffness soft robotic gripper: design, development, and prospects. BIOINSPIRATION & BIOMIMETICS 2023; 19:011001. [PMID: 37948756 DOI: 10.1088/1748-3190/ad0b8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
The advent of variable stiffness soft robotic grippers furnishes a conduit for exploration and manipulation within uncharted, non-structured environments. The paper provides a comprehensive review of the necessary technologies for the configuration design of soft robotic grippers with variable stiffness, serving as a reference for innovative gripper design. The design of variable stiffness soft robotic grippers typically encompasses the design of soft robotic grippers and variable stiffness modules. To adapt to unfamiliar environments and grasp unknown objects, a categorization and discussion have been undertaken based on the contact and motion manifestations between the gripper and the things across various dimensions: points contact, lines contact, surfaces contact, and full-bodies contact, elucidating the advantages and characteristics of each gripping type. Furthermore, when designing soft robotic grippers, we must consider the effectiveness of object grasping methods but also the applicability of the actuation in the target environment. The actuation is the propelling force behind the gripping motion, holding utmost significance in shaping the structure of the gripper. Given the challenge of matching the actuation of robotic grippers with the target scenario, we reviewed the actuation of soft robotic grippers. We analyzed the strengths and limitations of various soft actuation, providing insights into the actuation design for soft robotic grippers. As a crucial technique for variable stiffness soft robotic grippers, variable stiffness technology can effectively address issues such as poor load-bearing capacity and instability caused by the softness of materials. Through a retrospective analysis of variable stiffness theory, we comprehensively introduce the development of variable stiffness theory in soft robotic grippers and showcase the application of variable stiffness grasping technology through specific case studies. Finally, we discuss the future prospects of variable stiffness grasping robots from several perspectives of applications and technologies.
Collapse
Affiliation(s)
- Yu Shan
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Yanzhi Zhao
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Haobo Wang
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Liming Dong
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Changlei Pei
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Zhaopeng Jin
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Yue Sun
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| | - Tao Liu
- Key Laboratory of Parallel Robot and Mechatronic System, Yanshan University, Qinhuangdao, Hebei Province, People's Republic of China
| |
Collapse
|
2
|
Yang Y, Chu C, Jin H, Hu Q, Xu M, Dong E. Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles. Biomimetics (Basel) 2023; 8:261. [PMID: 37366856 DOI: 10.3390/biomimetics8020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
This paper presented a flexible and easily fabricated untethered underwater robot inspired by Aurelia, which is named "Au-robot". The Au-robot is actuated by six radial fins made of shape memory alloy (SMA) artificial muscle modules, which can realize pulse jet propulsion motion. The thrust model of the Au-robot's underwater motion is developed and analyzed. To achieve a multimodal and smooth swimming transition for the Au-robot, a control method integrating a central pattern generator (CPG) and an adaptive regulation (AR) heating strategy is provided. The experimental results demonstrate that the Au-robot, with good bionic properties in structure and movement mode, can achieve a smooth transition from low-frequency swimming to high-frequency swimming with an average maximum instantaneous velocity of 12.61 cm/s. It shows that a robot designed and fabricated with artificial muscle can imitate biological structures and movement traits more realistically and has better motor performance.
Collapse
Affiliation(s)
- Yihan Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chenzhong Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Hu Jin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Qiqiang Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Min Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Erbao Dong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Kashef Tabrizian S, Terryn S, Cornellà AC, Brancart J, Legrand J, Van Assche G, Vanderborght B. Assisted damage closure and healing in soft robots by shape memory alloy wires. Sci Rep 2023; 13:8820. [PMID: 37258618 DOI: 10.1038/s41598-023-35943-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Self-healing soft robots show enormous potential to recover functional performance after healing the damages. However, healing in these systems is limited by the recontact of the fracture surfaces. This paper presents for the first time a shape memory alloy (SMA) wire-reinforced soft bending actuator made out of a castor oil-based self-healing polymer, with the incorporated ability to recover from large incisions via shape memory assisted healing. The integrated SMA wires serve three major purposes; (i) Large incisions are closed by contraction of the current-activated SMA wires that are integrated into the chamber. These pull the fracture surfaces into contact, enabling the healing. (ii) The heat generated during the activation of the SMA wires is synergistically exploited for accelerating the healing. (iii) Lastly, during pneumatic actuation, the wires constrain radial expansion and one-side longitudinal extension of the soft chamber, effectuating the desired actuator bending motion. This novel approach of healing is studied via mechanical and ultrasound tests on the specimen level, as well as via bending characterization of the pneumatic robot in multiple damage healing cycles. This technology allows soft robots to become more independent in terms of their self-healing capabilities from human intervention.
Collapse
Affiliation(s)
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aleix Costa Cornellà
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joost Brancart
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julie Legrand
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| |
Collapse
|
4
|
Current Designs of Robotic Arm Grippers: A Comprehensive Systematic Review. ROBOTICS 2023. [DOI: 10.3390/robotics12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent technological advances enable gripper-equipped robots to perform many tasks traditionally associated with the human hand, allowing the use of grippers in a wide range of applications. Depending on the application, an ideal gripper design should be affordable, energy-efficient, and adaptable to many situations. However, regardless of the number of grippers available on the market, there are still many tasks that are difficult for grippers to perform, which indicates the demand and room for new designs to compete with the human hand. Thus, this paper provides a comprehensive review of robotic arm grippers to identify the benefits and drawbacks of various gripper designs. The research compares gripper designs by considering the actuation mechanism, degrees of freedom, grasping capabilities with multiple objects, and applications, concluding which should be the gripper design with the broader set of capabilities.
Collapse
|
5
|
Design of a Novel Soft Pneumatic Gripper with Variable Gripping Size and Mode. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Hu Q, Huang H, Dong E, Sun D. A Bioinspired Composite Finger With Self-Locking Joints. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3056345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|