1
|
Brosch-Lenz JF, Delker A, Schmidt F, Tran-Gia J. On the Use of Artificial Intelligence for Dosimetry of Radiopharmaceutical Therapies. Nuklearmedizin 2023; 62:379-388. [PMID: 37827503 DOI: 10.1055/a-2179-6872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.
Collapse
Affiliation(s)
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, Munich, Germany
| | - Fabian Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
2
|
Tabatabaian F, Vora SR, Mirabbasi S. Applications, functions, and accuracy of artificial intelligence in restorative dentistry: A literature review. J ESTHET RESTOR DENT 2023; 35:842-859. [PMID: 37522291 DOI: 10.1111/jerd.13079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE The applications of artificial intelligence (AI) are increasing in restorative dentistry; however, the AI performance is unclear for dental professionals. The purpose of this narrative review was to evaluate the applications, functions, and accuracy of AI in diverse aspects of restorative dentistry including caries detection, tooth preparation margin detection, tooth restoration design, metal structure casting, dental restoration/implant detection, removable partial denture design, and tooth shade determination. OVERVIEW An electronic search was performed on Medline/PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar databases. English-language articles, published from January 1, 2000, to March 1, 2022, relevant to the aforementioned aspects were selected using the key terms of artificial intelligence, machine learning, deep learning, artificial neural networks, convolutional neural networks, clustering, soft computing, automated planning, computational learning, computer vision, and automated reasoning as inclusion criteria. A manual search was also performed. Therefore, 157 articles were included, reviewed, and discussed. CONCLUSIONS Based on the current literature, the AI models have shown promising performance in the mentioned aspects when being compared with traditional approaches in terms of accuracy; however, as these models are still in development, more studies are required to validate their accuracy and apply them to routine clinical practice. CLINICAL SIGNIFICANCE AI with its specific functions has shown successful applications with acceptable accuracy in diverse aspects of restorative dentistry. The understanding of these functions may lead to novel applications with optimal accuracy for AI in restorative dentistry.
Collapse
Affiliation(s)
- Farhad Tabatabaian
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Siddharth R Vora
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shahriar Mirabbasi
- Department of Electrical and Computer Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Hagio T, Murthy VL. Deep learning: Opening a third eye to myocardial perfusion imaging. J Nucl Cardiol 2022; 29:3311-3314. [PMID: 35554868 DOI: 10.1007/s12350-022-02959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk St, Suite 200, Ann Arbor, MI, 48108, USA.
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Shao W, Leung KH, Xu J, Coughlin JM, Pomper MG, Du Y. Generation of Digital Brain Phantom for Machine Learning Application of Dopamine Transporter Radionuclide Imaging. Diagnostics (Basel) 2022; 12:1945. [PMID: 36010295 PMCID: PMC9406894 DOI: 10.3390/diagnostics12081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While machine learning (ML) methods may significantly improve image quality for SPECT imaging for the diagnosis and monitoring of Parkinson's disease (PD), they require a large amount of data for training. It is often difficult to collect a large population of patient data to support the ML research, and the ground truth of lesion is also unknown. This paper leverages a generative adversarial network (GAN) to generate digital brain phantoms for training ML-based PD SPECT algorithms. A total of 594 PET 3D brain models from 155 patients (113 male and 42 female) were reviewed and 1597 2D slices containing the full or a portion of the striatum were selected. Corresponding attenuation maps were also generated based on these images. The data were then used to develop a GAN for generating 2D brain phantoms, where each phantom consisted of a radioactivity image and the corresponding attenuation map. Statistical methods including histogram, Fréchet distance, and structural similarity were used to evaluate the generator based on 10,000 generated phantoms. When the generated phantoms and training dataset were both passed to the discriminator, similar normal distributions were obtained, which indicated the discriminator was unable to distinguish the generated phantoms from the training datasets. The generated digital phantoms can be used for 2D SPECT simulation and serve as the ground truth to develop ML-based reconstruction algorithms. The cumulated experience from this work also laid the foundation for building a 3D GAN for the same application.
Collapse
Affiliation(s)
- Wenyi Shao
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin H. Leung
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jingyan Xu
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer M. Coughlin
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Du
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Shao W, Zhou B. Dielectric Breast Phantoms by Generative Adversarial Network. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 2022; 70:6256-6264. [PMID: 36969506 PMCID: PMC10038476 DOI: 10.1109/tap.2021.3121149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In order to conduct the research of machine-learning (ML) based microwave breast imaging (MBI), a large number of digital dielectric breast phantoms that can be used as training data (ground truth) are required but are difficult to be achieved from practice. Although a few dielectric breast phantoms have been developed for research purpose, the number and the diversity are limited and is far inadequate to develop a robust ML algorithm for MBI. This paper presents a neural network method to generate 2D virtual breast phantoms that are similar to the real ones, which can be used to develop ML-based MBI in the future. The generated phantoms are similar but are different from those used in training. Each phantom consists of several images with each representing the distribution of a dielectric parameter in the breast map. Statistical analysis was performed over 10,000 generated phantoms to investigate the performance of the generative network. With the generative network, one may generate unlimited number of breast images with more variations, so the ML-based MBI will be more ready to deploy.
Collapse
Affiliation(s)
- Wenyi Shao
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
6
|
Leube J, Gustafsson J, Lassmann M, Salas-Ramirez M, Tran-Gia J. Analysis of a deep learning-based method for generation of SPECT projections based on a large Monte Carlo simulated dataset. EJNMMI Phys 2022; 9:47. [PMID: 35852673 PMCID: PMC9296746 DOI: 10.1186/s40658-022-00476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/03/2022] [Indexed: 12/05/2022] Open
Abstract
Background In recent years, a lot of effort has been put in the enhancement of medical imaging using artificial intelligence. However, limited patient data in combination with the unavailability of a ground truth often pose a challenge to a systematic validation of such methodologies. The goal of this work was to investigate a recently proposed method for an artificial intelligence-based generation of synthetic SPECT projections, for acceleration of the image acquisition process based on a large dataset of realistic SPECT simulations. Methods A database of 10,000 SPECT projection datasets of heterogeneous activity distributions of randomly placed random shapes was simulated for a clinical SPECT/CT system using the SIMIND Monte Carlo program. Synthetic projections at fixed angular increments from a set of input projections at evenly distributed angles were generated by different u-shaped convolutional neural networks (u-nets). These u-nets differed in noise realization used for the training data, number of input projections, projection angle increment, and number of training/validation datasets. Synthetic projections were generated for 500 test projection datasets for each u-net, and a quantitative analysis was performed using statistical hypothesis tests based on structural similarity index measure and normalized root-mean-squared error. Additional simulations with varying detector orbits were performed on a subset of the dataset to study the effect of the detector orbit on the performance of the methodology. For verification of the results, the u-nets were applied to Jaszczak and NEMA physical phantom data obtained on a clinical SPECT/CT system. Results No statistically significant differences were observed between u-nets trained with different noise realizations. In contrast, a statistically significant deterioration was found for training with a small subset (400 datasets) of the 10,000 simulated projection datasets in comparison with using a large subset (9500 datasets) for training. A good agreement between synthetic (i.e., u-net generated) and simulated projections before adding noise demonstrates a denoising effect. Finally, the physical phantom measurements show that our findings also apply for projections measured on a clinical SPECT/CT system. Conclusion Our study shows the large potential of u-nets for accelerating SPECT/CT imaging. In addition, our analysis numerically reveals a denoising effect when generating synthetic projections with a u-net. Clinically interesting, the methodology has proven robust against camera orbit deviations in a clinically realistic range. Lastly, we found that a small number of training samples (e.g., ~ 400 datasets) may not be sufficient for reliable generalization of the u-net. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00476-w.
Collapse
Affiliation(s)
- Julian Leube
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Johan Gustafsson
- Medical Radiation Physics, Lund, Lund University, Skåne University Hospital, Lund, 221 85, Lund, Sweden
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Maikol Salas-Ramirez
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
7
|
Visvikis D, Lambin P, Beuschau Mauridsen K, Hustinx R, Lassmann M, Rischpler C, Shi K, Pruim J. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. Eur J Nucl Med Mol Imaging 2022; 49:4452-4463. [PMID: 35809090 PMCID: PMC9606092 DOI: 10.1007/s00259-022-05891-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as it will in everyday life. In this review, we focus on the potential applications of AI in the field, both from a physical (radiomics, underlying statistics, image reconstruction and data analysis) and a clinical (neurology, cardiology, oncology) perspective. Challenges for transferability from research to clinical practice are being discussed as is the concept of explainable AI. Finally, we focus on the fields where challenges should be set out to introduce AI in the field of nuclear medicine and molecular imaging in a reliable manner.
Collapse
Affiliation(s)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Center (MUMC +), Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Center (MUMC +), Maastricht, The Netherlands
| | - Kim Beuschau Mauridsen
- Center of Functionally Integrative Neuroscience and MindLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Roland Hustinx
- GIGA-CRC in Vivo Imaging, University of Liège, GIGA, Avenue de l'Hôpital 11, 4000, Liege, Belgium
| | - Michael Lassmann
- Klinik Und Poliklinik Für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Jan Pruim
- Medical Imaging Center, Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, Rahmim A, Uribe C. Role of Artificial Intelligence in Theranostics:: Toward Routine Personalized Radiopharmaceutical Therapies. PET Clin 2021; 16:627-641. [PMID: 34537133 DOI: 10.1016/j.cpet.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We highlight emerging uses of artificial intelligence (AI) in the field of theranostics, focusing on its significant potential to enable routine and reliable personalization of radiopharmaceutical therapies (RPTs). Personalized RPTs require patient-specific dosimetry calculations accompanying therapy. Additionally we discuss the potential to exploit biological information from diagnostic and therapeutic molecular images to derive biomarkers for absorbed dose and outcome prediction; toward personalization of therapies. We try to motivate the nuclear medicine community to expand and align efforts into making routine and reliable personalization of RPTs a reality.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Katherine Zukotynski
- Department of Medicine and Radiology, McMaster University, 1200 Main Street West, Hamilton, Ontario L9G 4X5, Canada
| | - Jean-Mathieu Beauregard
- Department of Radiology and Nuclear Medicine, Cancer Research Centre, Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada; Department of Medical Imaging, Research Center (Oncology Axis), CHU de Québec - Université Laval, 2325 Rue de l'Université, Québec City, Quebec G1V 0A6, Canada
| | - Vincent Gaudet
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Physics, University of British Columbia, 325 - 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, 11th Floor, 2775 Laurel St, Vancouver, British Columbia V5Z 1M9, Canada; Department of Functional Imaging, BC Cancer, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| |
Collapse
|
9
|
Slart RHJA, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AWJM, Gimelli A, Georgoulias P, Gheysens O, Gaemperli O, Habib G, Hustinx R, Cosyns B, Verberne HJ, Hyafil F, Erba PA, Lubberink M, Slomka P, Išgum I, Visvikis D, Kolossváry M, Saraste A. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol Imaging 2021; 48:1399-1413. [PMID: 33864509 PMCID: PMC8113178 DOI: 10.1007/s00259-021-05341-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and functional imaging techniques are commonly performed to aid this endeavor, including coronary computed tomography angiography (CCTA) and nuclear cardiology imaging. Continuous improvement in positron emission tomography (PET), single-photon emission computed tomography (SPECT), and CT hardware and software has resulted in improved diagnostic performance and wide implementation of these imaging techniques in daily clinical practice. However, the human ability to interpret, quantify, and integrate these data sets is limited. The identification of novel markers and application of machine learning (ML) algorithms, including deep learning (DL) to cardiovascular imaging techniques will further improve diagnosis and prognostication for patients with cardiovascular diseases. The goal of this position paper of the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI) is to provide an overview of the general concepts behind modern machine learning-based artificial intelligence, highlights currently prefered methods, practices, and computational models, and proposes new strategies to support the clinical application of ML in the field of cardiovascular imaging using nuclear cardiology (hybrid) and CT techniques.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands.
- Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, The Netherlands.
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging facility QMRI, Edinburgh, UK
| | - Luis Eduardo Juarez-Orozco
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging facility QMRI, Edinburgh, UK
| | - Andor W J M Glaudemans
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
| | | | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Gilbert Habib
- APHM, Cardiology Department, La Timone Hospital, Marseille, France
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, ULiège, Liège, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart en Vaatziekten, Universitair Ziekenhuis Brussel, 101 Laarbeeklaan, 1090, Brussels, Belgium
| | - Hein J Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, F-75015, Paris, France
- University of Paris, PARCC, INSERM, F-75006, Paris, France
| | - Paola A Erba
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO 9700 RB, Groningen, The Netherlands
- Department of Nuclear Medicine (P.A.E.), University of Pisa, Pisa, Italy
- Department of Translational Research and New Technology in Medicine (P.A.E.), University of Pisa, Pisa, Italy
| | - Mark Lubberink
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Piotr Slomka
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivana Išgum
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC - location AMC, University of Amsterdam, 1105, Amsterdam, AZ, Netherlands
| | | | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, Budapest, Hungary
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Shao W, Rowe SP, Du Y. Artificial intelligence in single photon emission computed tomography (SPECT) imaging: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:820. [PMID: 34268433 PMCID: PMC8246162 DOI: 10.21037/atm-20-5988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Artificial intelligence (AI) has been widely applied to medical imaging. The use of AI for emission computed tomography, particularly single-photon emission computed tomography (SPECT) emerged nearly 30 years ago but has been accelerated in recent years due to the development of AI technology. In this review, we will describe and discuss the progress of AI technology in SPECT imaging. The applications of AI are dispersed in disease prediction and diagnosis, post-reconstruction image denoising, attenuation map generation, and image reconstruction. These applications are relevant to many disease categories such as the neurological disorders, kidney failure, cancer, heart disease, etc. This review summarizes these applications so that SPECT researchers can have a reference overview of the role of AI in current SPECT studies. For each application, we followed the timeline to present the evolution of AI’s usage and offered insights on how AI was combined with the knowledge of underlying physics as well as traditional non-learning techniques. Ultimately, AI applications are critical to the progress of modern SPECT technology because they provide compensations for many deficiencies in conventional SPECT imaging methods and demonstrate unparalleled success. Nonetheless, AI also has its own challenges and limitations in the medical field, including SPECT imaging. These fundamental questions are discussed, and possible future directions and countermeasures are suggested.
Collapse
Affiliation(s)
- Wenyi Shao
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Steven P Rowe
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Du
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys Med 2021; 83:122-137. [DOI: 10.1016/j.ejmp.2021.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
|
12
|
Torres-Velázquez M, Chen WJ, Li X, McMillan AB. Application and Construction of Deep Learning Networks in Medical Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:137-159. [PMID: 34017931 PMCID: PMC8132932 DOI: 10.1109/trpms.2020.3030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep learning (DL) approaches are part of the machine learning (ML) subfield concerned with the development of computational models to train artificial intelligence systems. DL models are characterized by automatically extracting high-level features from the input data to learn the relationship between matching datasets. Thus, its implementation offers an advantage over common ML methods that often require the practitioner to have some domain knowledge of the input data to select the best latent representation. As a result of this advantage, DL has been successfully applied within the medical imaging field to address problems, such as disease classification and tumor segmentation for which it is difficult or impossible to determine which image features are relevant. Therefore, taking into consideration the positive impact of DL on the medical imaging field, this article reviews the key concepts associated with its evolution and implementation. The sections of this review summarize the milestones related to the development of the DL field, followed by a description of the elements of deep neural network and an overview of its application within the medical imaging field. Subsequently, the key steps necessary to implement a supervised DL application are defined, and associated limitations are discussed.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Wei-Jie Chen
- Department of Electrical and Computer Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Xue Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA, and also with the Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
13
|
Reader AJ, Corda G, Mehranian A, Costa-Luis CD, Ellis S, Schnabel JA. Deep Learning for PET Image Reconstruction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3014786] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|