• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (2070)   Subscriber (50484)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Huang W, Sun M, Zhu L, Oh SK, Pedrycz W. Deep Fuzzy Min-Max Neural Network: Analysis and Design. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:8229-8240. [PMID: 37015551 DOI: 10.1109/tnnls.2022.3226040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
2
Kenger ÖN, Özceylan E. Fuzzy min–max neural networks: a bibliometric and social network analysis. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
3
Pourpanah F, Wang D, Wang R, Lim CP. A semisupervised learning model based on fuzzy min–max neural networks for data classification. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
4
Jeyafzam F, Vaziri B, Suraki MY, Hosseinabadi AAR, Slowik A. Improvement of grey wolf optimizer with adaptive middle filter to adjust support vector machine parameters to predict diabetes complications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
5
Ma Y, Liu J, Zhao Y. Evolved Fuzzy Min-Max Neural Network for Unknown Labeled Data and its Application on Defect Recognition in Depth. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Khuat TT, Ruta D, Gabrys B. Hyperbox-based machine learning algorithms: a comprehensive survey. Soft comput 2020. [DOI: 10.1007/s00500-020-05226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
7
A modified neuro-fuzzy classifier and its parallel implementation on modern GPUs for real time intrusion detection. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
8
The Combination of Fuzzy Min–Max Neural Network and Semi-supervised Learning in Solving Liver Disease Diagnosis Support Problem. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-3351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
9
Pourpanah F, Lim CP, Wang X, Tan CJ, Seera M, Shi Y. A hybrid model of fuzzy min–max and brain storm optimization for feature selection and data classification. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
10
Castiello C, Fanelli AM, Lucarelli M, Mencar C. Interpretable fuzzy partitioning of classified data with variable granularity. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2018.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
11
Liu J, Ma Y, Zhang H, Su H, Xiao G. A modified fuzzy min–max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
12
Improving the Fuzzy Min-Max neural network with a K-nearest hyperbox expansion rule for pattern classification. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
A new hyperbox selection rule and a pruning strategy for the enhanced fuzzy min–max neural network. Neural Netw 2017;86:69-79. [DOI: 10.1016/j.neunet.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022]
14
SM-RuleMiner: Spider monkey based rule miner using novel fitness function for diabetes classification. Comput Biol Med 2016;81:79-92. [PMID: 28027460 DOI: 10.1016/j.compbiomed.2016.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
15
Shinde S, Kulkarni U. Extracting classification rules from modified fuzzy min–max neural network for data with mixed attributes. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2015.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
16
A modified fuzzy min–max neural network for data clustering and its application to power quality monitoring. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2014.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
17
Mohammed MF, Lim CP. An enhanced fuzzy min-max neural network for pattern classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:417-429. [PMID: 25720001 DOI: 10.1109/tnnls.2014.2315214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
18
Patient admission prediction using a pruned fuzzy min–max neural network with rule extraction. Neural Comput Appl 2015. [DOI: 10.1007/s00521-014-1631-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
19
Dennis B, Muthukrishnan S. AGFS: Adaptive Genetic Fuzzy System for medical data classification. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2014.09.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
Forghani Y, Sadoghi Yazdi H. Fuzzy Min–Max Neural Network for Learning a Classifier with Symmetric Margin. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
21
Davtalab R, Dezfoulian MH, Mansoorizadeh M. Multi-level fuzzy min-max neural network classifier. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014;25:470-482. [PMID: 24807444 DOI: 10.1109/tnnls.2013.2275937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
22
Jain LC, Seera M, Lim CP, Balasubramaniam P. A review of online learning in supervised neural networks. Neural Comput Appl 2013. [DOI: 10.1007/s00521-013-1534-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
23
Fuzzy set-oriented neural networks based on fuzzy polynomial inference and dynamic genetic optimization. Knowl Inf Syst 2013. [DOI: 10.1007/s10115-012-0610-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
24
Huaguang Zhang, Jinhai Liu, Dazhong Ma, Zhanshan Wang. Data-Core-Based Fuzzy Min–Max Neural Network for Pattern Classification. ACTA ACUST UNITED AC 2011;22:2339-52. [DOI: 10.1109/tnn.2011.2175748] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
25
Bicocchi N, Baumgarten M, Brgulja N, Kusber R, Mamei M, Mulvenna M, Zambonelli F. Self-Organized Data Ecologies for Pervasive Situation-Aware Services: The Knowledge Networks Approach. ACTA ACUST UNITED AC 2010. [DOI: 10.1109/tsmca.2010.2048023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA