1
|
Sinelnikov AN, Melnikov AR, Getmanov YV, Kolomeec DA, Kalneus EV, Fedin MV, Veber SL. Temperature Dependence of the Sensitivity of PVDF Pyroelectric Sensors to THz Radiation: Towards Cryogenic Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:5808. [PMID: 39275719 PMCID: PMC11398077 DOI: 10.3390/s24175808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the best candidates. This is due to their versatility, outstanding performance, ease of fabrication, and robustness. In this paper, we propose a compact pyroelectric detector based on a bioriented poled polyvinylidene difluoride film coated with sputtered metal electrodes for in situ absorption measurement at cryogenic temperature. The detector design was optimized for the registration system of the electron paramagnetic resonance (EPR) endstation of the Novosibirsk Free Electron Laser facility. Measurements of the detector response to pulsed THz radiation at different temperatures and electrode materials showed that the response varies with both the temperature and the type of electrode material used. The maximum signal level corresponds to the temperature range of 10-40 K, in which the pyroelectric coefficient of the PVDF film also has a maximum value. Among the three coatings studied, namely indium tin oxide (ITO), Au, and Cu/Ni, the latter has the highest increase in sensitivity at low temperature. The possibility of using the detectors for in situ absorption measurement was exemplified using two typical molecular spin systems, which exhibited a transparency of 20-30% at 76.9 cm-1 and 5 K. Such measurements, carried out directly in the cryostat with the main recording system and sample fully configured, allow precise control of the THz radiation parameters at the EPR endstation.
Collapse
Affiliation(s)
- Artem N Sinelnikov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russia
- Moscow Center for Advanced Studies, 20, Kulakova Str., Moscow 123592, Russia
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russia
| | - Anatoly R Melnikov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russia
| | - Yaroslav V Getmanov
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russia
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., Novosibirsk 630090, Russia
- Novosibirsk State Technical University, 20, Karl Marx Ave., Novosibirsk 630073, Russia
| | - Darya A Kolomeec
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Evgeny V Kalneus
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 3, Institutskaya Str., Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russia
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russia
| | - Sergey L Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russia
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Melnikov AR, Ivanov MY, Samsonenko AA, Getmanov YV, Nikovskiy IA, Matiukhina AK, Zorina-Tikhonova EN, Voronina JK, Goloveshkin AS, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL, Fedin MV, Veber SL. Inductive detection of temperature-induced magnetization dynamics of molecular spin systems. J Chem Phys 2024; 160:224201. [PMID: 38856059 DOI: 10.1063/5.0211936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation. Another possible source of perturbation is a laser pulse that rapidly heats the sample. This approach has proven to be one of the most useful techniques for studying the kinetics and mechanism of chemical and biochemical reactions. Inspired by these works, we propose an inductive detection of temperature-induced magnetization dynamics as applied to the study of molecular spin systems and describe the general design and construction of a particular induction probehead, taking into account the constraints imposed by the cryostat and electromagnet. To evaluate the performance, several coordination compounds of VO2+, Co2+, and Dy3+ were investigated using low-energy pulses of a terahertz free electron laser of the Novosibirsk free electron laser facility as a heat source. All measured magnetization dynamics were qualitatively or quantitatively described using a proposed basic theoretical model and compared with the data obtained by alternating current magnetometry. Based on the results of the research, the possible scope of applications of inductive detection and its advantages and disadvantages in comparison with standard methods are discussed.
Collapse
Affiliation(s)
- Anatoly R Melnikov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Mikhail Yu Ivanov
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
| | - Arkady A Samsonenko
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Yaroslav V Getmanov
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| | - Igor A Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Anna K Matiukhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Ekaterina N Zorina-Tikhonova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Julia K Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Alexander S Goloveshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28, Vavilova Str., Moscow 119334, Russian Federation
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31, Leninsky Ave., Moscow 119991, Russian Federation
| | - Matvey V Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Sergey L Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 1, Pirogova Str., Novosibirsk 630090, Russian Federation
| |
Collapse
|
3
|
Melnikov AR, Kalneus EV, Getmanov YV, Shevchenko DA, Gerasimov VV, Anisimov OA, Fedin MV, Veber SL. Comparative Study of Single Crystal and Polymeric Pyroelectric Detectors in the 0.9-2.0 THz Range Using Monochromatic Laser Radiation of the NovoFEL. Polymers (Basel) 2023; 15:4124. [PMID: 37896368 PMCID: PMC10610270 DOI: 10.3390/polym15204124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient and reliable sensors operating at room temperature is essential to advance the application of terahertz (THz) science and technology. Pyroelectric THz detectors are among the best candidates, taking into account their variety, outstanding performance, ease of fabrication, and robustness. In this work, we compare the performance of six different detectors, based on either LaTiO3 crystal or different polymeric films, using monochromatic radiation of the Novosibirsk Free Electron Laser facility (NovoFEL) in the frequency range of 0.9-2.0 THz. The main characteristics, including noise equivalent power and frequency response, were determined for all of them. Possible reasons for the differences in the obtained characteristics are discussed on the basis of the main physicochemical characteristics and optical properties of the sensitive area. At least three detectors showed sufficient sensitivity to monitor the shape and duration of the THz macropulses utilizing only a small fraction of the THz radiation from the primary beam. This capability is crucial for accurate characterization of THz radiation during the main experiment at various specialized endstations at synchrotrons and free electron lasers. As an example of such characterization, the typical stability of the average NovoFEL radiation power at the beamline of the electron paramagnetic resonance endstation was investigated.
Collapse
Affiliation(s)
- Anatoly R. Melnikov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., 630090 Novosibirsk, Russia;
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
| | - Evgeny V. Kalneus
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3, Institutskaya Str., 630090 Novosibirsk, Russia;
| | - Yaroslav V. Getmanov
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia;
| | - Darya A. Shevchenko
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia;
| | - Vasily V. Gerasimov
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia;
| | - Oleg A. Anisimov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3, Institutskaya Str., 630090 Novosibirsk, Russia;
| | - Matvey V. Fedin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., 630090 Novosibirsk, Russia;
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
| | - Sergey L. Veber
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 3a, Institutskaya Str., 630090 Novosibirsk, Russia;
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia; (E.V.K.); (Y.V.G.); (V.V.G.)
| |
Collapse
|
4
|
Kubarev V. Periodical properties of the ray transfer matrix and generation of sideband modes in a stable laser resonator. OPTICS LETTERS 2023; 48:4785-4788. [PMID: 37707902 DOI: 10.1364/ol.501366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The paper describes a subclass of stable laser cavities, periodic stable laser cavities, in which perturbations consisting of deviations of the mode axis from the ideal direction are of a strictly periodic oscillatory nature. In such resonators, in addition to unperturbed longitudinal-transverse spatial modes with an ideal direction of the optical axis, additional modes can appear at sideband frequencies, associated with the resonant buildup of perturbation oscillations. These modes have approximately the same spatial structure as those of the unperturbed fundamental modes, and their frequency detuning from the frequencies of the fundamental modes is governed by the resonator geometry and the periodicity parameter, i.e., the number of passes in the resonator in one period of perturbation oscillations. For many repetitively pulsed laser systems emitting comb spectrum structures, such as free electron lasers, modern frequency standards using femtosecond lasers, and various comb spectrometers, it is desirable to avoid such periodic stable cavities in order to preserve the purity of the comb spectrum used in them. This may also be important for CW lasers with extreme radiation monochromaticity. In some repetitively pulsed lasers, on the contrary, it may be desirable to use such periodic stable laser cavities for a more complete frequency filling and higher quasi-continuity of their emission spectra.
Collapse
|
5
|
Lin Y, Wu X, Wang K, Shang S, Gong Y, Zhao H, Wu D, Zhang P, Lu X. Spectral Characteristics and Functional Responses of Phospholipid Bilayers in the Terahertz Band. Int J Mol Sci 2023; 24:ijms24087111. [PMID: 37108273 PMCID: PMC10138992 DOI: 10.3390/ijms24087111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the vibrational information encoded within the terahertz (THz) spectrum of biomolecules is critical for guiding the exploration of its functional responses to specific THz radiation wavelengths. This study investigated several important phospholipid components of biological membranes-distearoyl phosphatidylethanolamine (DSPE), dipalmitoyl phosphatidylcholine (DPPC), sphingosine phosphorylcholine (SPH), and lecithin bilayer-using THz time-domain spectroscopy. We observed similar spectral patterns for DPPC, SPH, and the lecithin bilayer, all of which contain the choline group as the hydrophilic head. Notably, the spectrum of DSPE, which has an ethanolamine head group, was different. Interestingly, density functional theory calculations confirmed that the absorption peak common to DSPE and DPPC at approximately 3.0 THz originated from a collective vibration of their similar hydrophobic tails. Accordingly, the cell membrane fluidity of RAW264.7 macrophages with irradiation at 3.1 THz was significantly enhanced, leading to improved phagocytosis. Our results highlight the importance of the spectral characteristics of the phospholipid bilayers when studying their functional responses in the THz band and suggest that irradiation at 3.1 THz is a potential non-invasive strategy to increase the fluidity of phospholipid bilayers for biomedical applications such as immune activation or drug administration.
Collapse
Affiliation(s)
- Yanyun Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingjuan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaicheng Wang
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yubin Gong
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Peng Zhang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Pavelyev V, Khonina S, Degtyarev S, Tukmakov K, Reshetnikov A, Gerasimov V, Osintseva N, Knyazev B. Subwavelength Diffractive Optical Elements for Generation of Terahertz Coherent Beams with Pre-Given Polarization State. SENSORS (BASEL, SWITZERLAND) 2023; 23:1579. [PMID: 36772619 PMCID: PMC9920005 DOI: 10.3390/s23031579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Coherent terahertz beams with radial polarization of the 1st, 2nd, and 3rd orders have been generated with the use of silicon subwavelength diffractive optical elements (DOEs). Silicon elements were fabricated by a technology similar to the technology used before for the fabrication of DOEs forming laser terahertz beams with pre-given mode content. The beam of the terahertz Novosibirsk Free Electron Laser was used as the illuminating beam. The experimental results are in good agreement with the results of the computer simulation.
Collapse
Affiliation(s)
- Vladimir Pavelyev
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Sergey Degtyarev
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | | | | - Vasily Gerasimov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - Natalya Osintseva
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - Boris Knyazev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Ilyakov I, Ponomaryov A, Klopf JM, Pashkin A, Deinert JC, de Oliveira TVAG, Evtushenko P, Helm M, Winnerl S, Kovalev S. Field-resolved THz-pump laser-probe measurements with CEP-unstable THz light sources. OPTICS EXPRESS 2022; 30:42141-42154. [PMID: 36366673 DOI: 10.1364/oe.473743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Radiation sources with a stable carrier-envelope phase (CEP) are highly demanded tools for field-resolved studies of light-matter interaction, providing access both to the amplitude and phase information of dynamical processes. At the same time, many coherent light sources, including those with outstanding power and spectral characteristics lack CEP stability, and so far could not be used for this type of research. In this work, we present a method enabling linear and non-linear phase-resolved terahertz (THz) -pump laser-probe experiments with CEP-unstable THz sources. THz CEP information for each pulse is extracted using a specially designed electro-optical detection scheme. The method correlates the extracted CEP value for each pulse with the THz-induced response in the parallel pump-probe experiment to obtain an absolute phase-resolved response after proper sorting and averaging. As a proof-of-concept, we demonstrate experimentally field-resolved THz time-domain spectroscopy with sub-cycle temporal resolution using the pulsed radiation of a CEP-unstable infrared free-electron laser (IR-FEL) operating at 13 MHz repetition rate. In spite of the long history of IR-FELs and their unique operational characteristics, no successful realization of CEP-stable operation has been demonstrated yet. Being CEP-unstable, IR-FEL radiation has so far only been used in non-coherent measurements without phase resolution. The technique demonstrated here is robust, operates easily at high-repetition rates and for short THz pulses, and enables common sequential field-resolved time-domain experiments. The implementation of such a technique at IR-FEL user end-stations will facilitate a new class of linear and non-linear experiments for studying coherent light-driven phenomena with increased signal-to-noise ratio.
Collapse
|
8
|
Peltek S, Meshcheryakova I, Kiseleva E, Oshchepkov D, Rozanov A, Serdyukov D, Demidov E, Vasiliev G, Vinokurov N, Bryanskaya A, Bannikova S, Popik V, Goryachkovskaya T. E. coli aggregation and impaired cell division after terahertz irradiation. Sci Rep 2021; 11:20464. [PMID: 34650158 PMCID: PMC8516962 DOI: 10.1038/s41598-021-99665-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
In this study we demonstrated that exposure of Escherichia coli (E. coli) to terahertz (THz) radiation resulted in a change in the activities of the tdcABCDEFGR and matA–F genes (signs of cell aggregation), gene yjjQ (signs of suppression of cell motility), dicABCF, FtsZ, and minCDE genes (signs of suppression of cell division), sfmACDHF genes (signs of adhesin synthesis), yjbEFGH and gfcA genes (signs of cell envelope stabilization). Moreover, THz radiation induced E. coli csg operon genes of amyloid biosynthesis. Electron microscopy revealed that the irradiated bacteria underwent increased aggregation; 20% of them formed bundle-like structures consisting of two to four pili clumped together. This could be the result of changes in the adhesive properties of the pili. We also found aberrations in cell wall structure in the middle part of the bacterial cell; these aberrations impaired the cell at the initial stages of division and resulted in accumulation of long rod-like cells. Overall, THz radiation was shown to have adverse effects on bacterial populations resulting in cells with abnormal morphology.
Collapse
Affiliation(s)
- Sergey Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090. .,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.
| | - Irina Meshcheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Elena Kiseleva
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Dmitry Oshchepkov
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Alexei Rozanov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Danil Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Evgeniy Demidov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Gennady Vasiliev
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Nikolay Vinokurov
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Alla Bryanskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Svetlana Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Vasiliy Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, Russia, 630090
| | - Tatyana Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090.,Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, Russia, 630090
| |
Collapse
|
9
|
Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, Xu G, Skorobogatiy M, Reshetov IV, Timashev PS, Spektor IE, Zaytsev KI, Tuchin VV. Cellular effects of terahertz waves. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210179VR. [PMID: 34595886 PMCID: PMC8483303 DOI: 10.1117/1.jbo.26.9.090902] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE An increasing interest in the area of biological effects at exposure of tissues and cells to the terahertz (THz) radiation is driven by a rapid progress in THz biophotonics, observed during the past decades. Despite the attractiveness of THz technology for medical diagnosis and therapy, there is still quite limited knowledge about safe limits of THz exposure. Different modes of THz exposure of tissues and cells, including continuous-wave versus pulsed radiation, various powers, and number and duration of exposure cycles, ought to be systematically studied. AIM We provide an overview of recent research results in the area of biological effects at exposure of tissues and cells to THz waves. APPROACH We start with a brief overview of general features of the THz-wave-tissue interactions, as well as modern THz emitters, with an emphasis on those that are reliable for studying the biological effects of THz waves. Then, we consider three levels of biological system organization, at which the exposure effects are considered: (i) solutions of biological molecules; (ii) cultures of cells, individual cells, and cell structures; and (iii) entire organs or organisms; special attention is devoted to the cellular level. We distinguish thermal and nonthermal mechanisms of THz-wave-cell interactions and discuss a problem of adequate estimation of the THz biological effects' specificity. The problem of experimental data reproducibility, caused by rareness of the THz experimental setups and an absence of unitary protocols, is also considered. RESULTS The summarized data demonstrate the current stage of the research activity and knowledge about the THz exposure on living objects. CONCLUSIONS This review helps the biomedical optics community to summarize up-to-date knowledge in the area of cell exposure to THz radiation, and paves the ways for the development of THz safety standards and THz therapeutic applications.
Collapse
Affiliation(s)
- Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Novosibirsk State Technical University, Russian Federation
| | - Danil S. Serdyukov
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Eugenia F. Nemova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Alexander S. Ratushnyak
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Anna S. Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
| | - Guofu Xu
- Polytechnique Montreal, Department of Engineering Physics, Canada
| | | | - Igor V. Reshetov
- Sechenov University, Institute for Cluster Oncology, Russian Federation
- Academy of Postgraduate Education FSCC FMBA, Russian Federation
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, Russian Federation
| | - Igor E. Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Bauman Moscow State Technical University, Russian Federation
| | - Valery V. Tuchin
- Saratov State University, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russian Federation
- National Research Tomsk State University, Russian Federation
| |
Collapse
|
10
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2021; 12:705-721. [PMID: 33680537 PMCID: PMC7901329 DOI: 10.1364/boe.412074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
A fluorescent biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz (THz) radiation was developed via transformation of Escherichia coli (E. coli) cells with plasmid, in which the promotor of the tdcR gene controls the expression of yellow fluorescent protein TurboYFP. The biosensor was exposed to THz radiation in various vessels and nutrient media. The threshold and dynamics of fluorescence were found to depend on irradiation conditions. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensor is applicable to studying influence of THz radiation on the activity of tdcR promotor that is involved in the transport and metabolism of threonine and serine in E. coli.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department of Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Technological Design Institute of Applied Microelectronics — Novosibirsk Branch of Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Komlenok M, Kononenko T, Sovyk D, Pavelyev V, Knyazev B, Ashkinazi E, Reshetnikov A, Komandin G, Pashinin V, Ralchenko V, Konov V. Diamond diffractive lens with a continuous profile for powerful terahertz radiation. OPTICS LETTERS 2021; 46:340-343. [PMID: 33449023 DOI: 10.1364/ol.414097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
An increase in the radiation power of terahertz (THz) sources requires the development of new optics working with it. The laser-assisted replication technique is proposed to fabricate the diamond cylindrical diffractive lens with a continuous profile for the THz range. The procedure involves the inverted structuring of a silicon substrate by laser ablation for its further replication to the diamond surface utilizing the chemical vapor deposition process. Testing of the fabricated lens performed with a free-electron laser at the wavelength of 141 µm has demonstrated high diffraction efficiency (95±5%) and a good agreement between the measured and expected intensity distribution in the focal plane.
Collapse
|
12
|
Chesnokov EN, Kubarev VV, Krasnoperov LN, Koshlyakov PV. Magnetic field effect on the free induction decay of hydroxyl radicals (OH) in the terahertz region. Phys Chem Chem Phys 2020; 22:20248-20252. [PMID: 32966402 DOI: 10.1039/d0cp02773a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of an external longitudinal magnetic field on the optical free induction decay from a free radical is observed for the first time. The experiments were performed on a rotational transition of the hydroxyl radical, OH (2Π3/2(J = 1) ← 2Π3/2(J = 0) at 83.8 cm-1), using a terahertz free electron laser. In contrast to the results of the experiments with a stable paramagnetic molecule, NO, the observed effect of an external magnetic field on the free induction decay from hydroxyl radicals is more complicated. A longitudinal magnetic field leads to the rotation of the polarization plane of the FID radiation and to an additional modulation of the signal intensity. The angle of the rotation of the plane of polarization is large, in agreement with the theoretical predictions. The observed FID kinetics in the time domain are in semi-quantitative agreement with the modeling. This observation opens an opportunity for the selective detection of weak signals of short-lived reactive paramagnetic free radicals from overwhelming signals that originate from stable non-paramagnetic species by polarization discrimination.
Collapse
Affiliation(s)
- E N Chesnokov
- Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.
| | - V V Kubarev
- Budker Institute of Nuclear Physics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation and Novosibirsk State University, Novosibirsk, Russian Federation
| | - L N Krasnoperov
- New Jersey Institute of Technology, Department of Chemistry and Environmental Science, Newark, NJ 07102, USA
| | - P V Koshlyakov
- Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.
| |
Collapse
|
13
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Snively EC, Xiong J, Musumeci P, Gover A. Broadband THz amplification and superradiant spontaneous emission in a guided FEL. OPTICS EXPRESS 2019; 27:20221-20230. [PMID: 31510120 DOI: 10.1364/oe.27.020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 06/10/2023]
Abstract
While significant progress has been made to fill the "THz gap", critical applications requiring powerful and energy efficient THz sources and amplifiers, from high frequency communications to medical and security imaging and nonlinear spectroscopy, continue to drive research on new methods of THz generation. Here we demonstrate a Free Electron Laser (FEL) THz source based on a novel interaction regime where broadband THz pulses can be phase and group velocity matched to the electron beam in a magnetic undulator via dispersion in a waveguide. Using < 10 pC, 6 MeV electron beams we show amplification of broadband THz pulses and demonstrate THz generation via both stimulated emission and spontaneous coherent superradiant emission, due to the short bunch length (< 200 fs rms) relative to resonant THz frequency (0.8 THz). A newly developed multifrequency simulation, designed to model the special case of guided FEL interaction, is benchmarked with the experiments and then used to extrapolate the capabilities of this "zero-slippage" FEL to efficient, tunable generation of > 100 μJ THz pulses when using higher (200 pC) beam charges and a tapered resonant condition.
Collapse
|
15
|
Kameshkov OE, Knyazev BA, Kotelnikov I. Generation of vortex beamlet lattices via diffraction of Bessel vortex beams on 2D hole arrays: analytical and numerical calculations and comparison with experiments. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819508002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Knyazev B, Kameshkov O, Vinokurov N, Cherkassky V, Choporova Y, Pavelyev V. Quasi-Talbot effect with vortex beams and formation of vortex beamlet arrays. OPTICS EXPRESS 2018; 26:14174-14185. [PMID: 29877459 DOI: 10.1364/oe.26.014174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
We study diffraction of Bessel vortex beams with topological charges of ±1 and ±2 and a wavelength of 130 µm on two-dimensional amplitude periodic gratings. Results of simulations and experiments at the Novosibirsk Free Electron Laser facility show that there appear periodic patterns in the planes corresponding to the classical main and fractional Talbot planes, but instead of self-images of the holes, there are observed periodic lattices of annular vortex microbeams with topological charges corresponding to the charge of the beam illuminating the grating. The ring diameters are the same for beams with different topological charges, but they are proportional to the grating period and inversely proportional to the diameter of the beam illuminating the grating.
Collapse
|
17
|
Veber SL, Tumanov SV, Fursova EY, Shevchenko OA, Getmanov YV, Scheglov MA, Kubarev VV, Shevchenko DA, Gorbachev II, Salikova TV, Kulipanov GN, Ovcharenko VI, Fedin MV. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:11-22. [PMID: 29360045 DOI: 10.1016/j.jmr.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.
Collapse
Affiliation(s)
- Sergey L Veber
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Sergey V Tumanov
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena Yu Fursova
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia
| | - Oleg A Shevchenko
- Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
| | | | | | - Vitaly V Kubarev
- Novosibirsk State University, Novosibirsk 630090, Russia; Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
| | | | | | | | | | | | - Matvey V Fedin
- International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Kubarev VV, Getmanov YV, Shevchenko OA, Chesnokov EN, Koshlyakov PV, Krasnoperov LN. Experiments using extreme parameters of the NovoFEL radiation. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819507004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Nikitin A, Knyazev B, Gerasimov V. Terahertz plasmonics: achievements and prospects. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819506023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Knyazev B, Azarov I, Chesnokov E, Choporova YY, Gerasimov V, Gorbachev Y, Getmanov Y, Goldenberg B, Kameshkov O, Koshlyakov P, Kotelnikov I, Kozlov A, Kubarev V, Kulipanov G, Malyshkin S, Nikitin A, Nikitin P, Osintseva N, Pavelyev V, Peltek S, Petrov A, Popik V, Salikova T, Scheglov M, Seredniakov S, Shastin V, Shevchenko O, Shvets V, Skorokhod D, Skrinsky A, Veber S, Vinokurov N, Voloshinov V, Zhukavin RK. Recent experiments at NovoFEL user stations. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819500002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Pavelyev V, Agafonov A, Volodkin B, Tukmakov K, Knyazev B, Choporova Y. Terahertz optical elements for control of high-power laser irradiation. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819507006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
First demonstration of coherent Cherenkov radiation matched to circular plane wave. Sci Rep 2017; 7:17440. [PMID: 29234106 PMCID: PMC5727164 DOI: 10.1038/s41598-017-17822-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 11/11/2022] Open
Abstract
We observed coherent Cherenkov radiation matched to a circular plane wave (CCR-MCP) for the first time using a hollow conical dielectric made of a high-density polyethylene. The refractive index and the absorption coefficient of the dielectric were evaluated to be 1.537 ± 0.004 and 0.006 ± 0.028 by measuring the pulse formed by the interference between the CCR-MCP and the coherent diffraction radiation. These values were consistent with the values shown in a reference for the high-density polyethylene. In accordance with the theory of the Cherenkov radiation, the spectrum of the CCR-MCP shifted towards higher wavenumbers compared to that of the coherent diffraction radiation. The intensity of the CCR-MCP beam was proportional to the height of the hollow conical dielectric and was 3 times the intensity of the coherent diffraction radiation. The CCR-MCP technique can produce broadband terahertz-wave sources with unprecedented power at compact accelerator facilities.
Collapse
|
23
|
Knyazev B, Cherkassky V, Choporova Y, Kameshkov O, Kulipanov G, Osintseva N, Pavelyev V, Vinokurov N, Volodkin B. Wave beams with orbital angular momentum: a step towards terahertz. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714905001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Choporova Y, Knyazev B, Osintseva N, Pavelyev V, Volodkin B. Terahertz Bessel beams with orbital angular momentum: diffraction and interference. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714905003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
|
26
|
|
27
|
Knyazev BA, Bagryanskaya EG, Chesnokov EN, Choporova YY, Gerasimov VV, Getmanov YV, Goldenberg BG, Kulipanov GN, Kozlov AS, Kubarev VV, Nikitin AK, Pavelyev VS, Peltek SE, Popik VM, Salikova TV, Scheglov MA, Serednyakov SS, Shevchenko OA, Skrinsky AN, Veber SL, Vinokurov NA. Novosibirsk Free Electron Laser as a User Facility. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.phpro.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
The Novosibirsk Free Electron Laser – Unique Source of Terahertz and Infrared Coherent Radiation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.phpro.2016.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Fabrication of High-effective Silicon Diffractive Optics for the Terahertz Range by Femtosecond Laser Ablation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.phpro.2016.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Knyazev BA, Choporova YY, Mitkov MS, Pavelyev VS, Volodkin BO. Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum. PHYSICAL REVIEW LETTERS 2015; 115:163901. [PMID: 26550877 DOI: 10.1103/physrevlett.115.163901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 06/05/2023]
Abstract
Bessel vortex beams with topological charges of l=±1 and l=±2 were produced in the terahertz spectral range from a free electron laser Gaussian beam (λ=141 μm) transformed using silicon binary diffractive optical elements. The spatial characteristics of the beams were obtained using a microbolometer array. A radius to path length ratio of 1:100 was achieved for nondiffractive beams with the average power of 30 W. Surface plasmon polaritons (SPPs) on gold-zinc-sulphide-air interfaces were generated due to diffraction of vortex beams on a sample edge. A new effect, a dependence of the efficiency of SPP generation on the direction of the azimuthal component of incident-radiation Poynting vector, was revealed.
Collapse
Affiliation(s)
- B A Knyazev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yu Yu Choporova
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - M S Mitkov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - V S Pavelyev
- Samara State Aerospace University, 443086 Samara, Russia
- Image Processing Systems Institute RAS, 443001 Samara, Russia
| | - B O Volodkin
- Samara State Aerospace University, 443086 Samara, Russia
| |
Collapse
|